京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据带来商业模式的成熟发展革命
大数据带给人们巨大的理念上的改变,同样它也会带来商业模式的成熟发展甚至革命。对大数据在商业上应用的1.0、2.0和3.0版本,做了细致的分析。
大数据1.0
大数据1.0很好理解,一个企业自身的业务需求产生大量数据,利用这些数据,通过深入分析,可以优化相关的业务。在这个时候,数据起到了指导决策的作用,举几个例子,比如说沃尔玛,它有大量的会员卡和零售数据,所以通过这些数据可以制定更好的优惠卷和个性化商品推荐服务。
也通过这些数据它能够更好地管理产业链、仓储和物流。我们在北京做过一家,是专门做电子商务服务的,拥有2亿多用户的数据和8千万单品的数据,就是怎么样做商品的个性化推荐。利用这些个性化推荐,不仅可以直接做自动化展示,还能够帮助电商更好地编排在网上店铺的摆放等等。
豆瓣是全球做社会化推荐最好的一家企业,利用评论数据,也利用点击浏览数据能够做到听其言观其行,利用这些数据可以做到几乎最好已知的社会化推荐,这样的例子还有很多。
还有一家企业,可以把电子化定义拿来做智能的诊断,亚马逊是做个性化推荐的鼻祖,它可以知道几乎你手机上安装的所有应用,事实上它能知道你的消费水平,有没有小孩,有没有车,有没有得什么慢性病,有没有金融支付终端等等,它还知道你在哪个地方,如果是这样一些企业打这样的个性化广告效果会很好。
大数据的2.0
大数据的2.0和1.0的理念有所不同,这里强调数据的外延。数据除了从自身的业务产生并解决自身问题以外,我们最终是数据本身有能力解决其他的问题,同样我们也需要有能力去把其他很多其他的数据放在一起解决自身的问题,这就是所谓的数据外部性问题。这里要求企业搜集与目标业务直接或间接关联的大量异质数据。
建立复杂的分析和预测模型,产生针对目标业务的输出。这时候数据本身就是决策。为什么这样说?虽然在这种复杂的模型中,我们已经很难看到真正的因果关系,我们并不知道是为什么由A到B,由B到C,但是我们只知道选择A比选择B好,所以数据本身不仅仅是指导决策,而就是决策。
举几个例子,比如说Zestfinance是一家很奇怪的信贷公司,可以快速发放小额贷款,所利用的不是平常讲的背景调查等等,而是它分析社交网络以及在其他购物等等频道留下来的你的活动记录,所以他说所有的数据实际对我们来说都是新闻数据,用这种办法来预测还贷能力,计算信用度,最典型的是把其他和你本行业看起来没有直接关联的数据用起来做本行业的事情。
大数据3.0
希望大数据3.0能进入真正的大数据时代。在这里我们对数据的质量价值,数据好不好,有多大价值,如果交换要如何付费。如果别人拷走了你的数据怎么算?还有数据的权益。还有我们特别关心的数据隐私安全等等,我们要有充分的认识。要又可以量化或者可以保障的措施。
在这个时候,类似于电信运营商有一种叫做数据运营商会出现,会有很多数据,在上面会有小的科研团队或者创新型企业,也有数据提供商和数据加工商,他们会产生不管是下载还是API接口还是其他的产品,会成为一种单独的产品在上面出售,有自己的分成模式。这个时候会出现一种新的数据客,他们在数据市场中玩粗加工的数据或者是粗加工的数据产品,再产生新的数据产品,以ATI的形式投放到数据市场。
就像手机市场中,经常有两三个人很聪明的人开发一个很有趣的应用,就有很多的使用。那时候可能有一个很聪明的人,开发和有趣的数据产品,可能很多企业政府科研团队都会使用他们的数据产品。
当然,最重要的是,所有的学术团体、企业和政府,都能够使用到大数据,这就是为什么讲今天叫大数据时代,因为如果只有两三个人,或者七八家企业能够用到大数据这不能叫一个时代,就像十个人上网不能叫互联网时代。
所以将来当我们有了大数据之后,我们希望的是未来某一天通过更好的索引,更好的体系结构的支撑,使得普通的科研团队、普通的创业者都能够有办法获取你所想获取的数据里面的一些逻辑片断,我们未来操纵大数据应该是四两拨千斤举重若轻,尽管我看到的是一个很大的数据,但是操作起来就像单机版里面的一个小文件一样,这是我们未来的希望。
总结
大数据从1.0到2.0到3.0,我们提过一个概念,商业模式从2B到2C到2D、2Data,实际上是有两条线在驱动它,一条线我们希望它越来越粗犷、开放,数据一定要开放出来,以共享的心态。一条线我们希望它越来越精深,就是深入地分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12