京公网安备 11010802034615号
经营许可证编号:京B2-20210330
甲骨文提升企业大数据愿景_数据分析师
甲骨文公司近日宣布推出新的大数据解决方案,它使信息访问和发掘更加简化,让客户能够快速地把数据转变成业务价值。新的解决方案包括Oracle Big Data Discovery、Oracle GoldenGate for Big Data、Oracle Big Data SQL 1.1和Oracle NoSQL Database 3.2.5。这些新产品进一步提升了企业大数据愿景,真正将Hadoop、NoSQL和SQL技术协同起来,无论在公有云、私有云还是内部部署的基础设施模式下,都能实现安全部署。
从大数据中获取价值的关键在于选取合适的工具来迁移和存储数据,进而有效地获取新的洞察。为了将洞察转化为可执行的操作,新的数据必须与现有数据、基础设施、应用和流程进行安全集成。Oracle提供的解决方案可无缝地协同工作,帮助企业以更快的速度、更低的成本和风险开发大数据。这些解决方案让客户安全地访问Hadoop、NoSQL和关系型数据库,同时轻松、经济地对大量不同的数据集进行分析。
IDC业务分析研究副总裁Dan Vesset表示:“单一的技术类型再也无法满足各种类型的分析应用场景。同时,针对一系列不相关项目的数据管理和分析将导致企业IT陷入不可控制的困境并面临不必要的风险。根据IDC的预测,到2017年,统一的数据平台架构将成为企业大数据和分析战略的基础,这种统一化的趋势将出现在信息管理、分析和搜索技术多个层面。”
甲骨文公司大数据副总裁Neil Mendelson表示:“数据是一种新型的资产,企业必须对它们的数据资本进行战略性的投资。Oracle为客户提供了集成化的平台,以帮助简化所有的数据访问,发现新的洞察,实时预测结果,并确保数据的有效管理和安全性。”
新的Oracle大数据解决方案可无缝运行在近期发布的Oracle大数据机X5(Oracle Big Data Appliance X5)和Oracle Exadata数据库云服务器X5(Oracle Exadata Database Machine X5)上。这些解决方案结合在一起,可为企业提供全面且经济的平台,以便于访问、发现、管理和确保大数据的实现。
最新发布的大数据创新成果包括:
Oracle Big Data Discovery是“可视化的Hadoop”,也是面向大数据洞察的,集发现、探索、转变、挖掘和分享为一体的端到端产品。大数据资产将被企业内更多的业务分析师利用,帮助减少风险并加速大数据项目的价值转化。
Oracle GoldenGatefor Big Data是一个基于Hadoop技术的产品,能让客户从异构交易型系统中将实时数据传入大数据系统中,目标包括ApacheHadoop、ApacheHive、Apache HBase 和ApacheFlume。通过把现有实时的架构合并到大数据解决方案中,客户能够强化其数据分析项目,同时确保其大数据库与生产系统时刻保持一致。
Oracle Big DataSQL 1.1将OracleSQL拓展至Hadoop和NoSQL,同时拥有与Oracle数据库一样的安全性。它通过一条OracleSQL语句的快速查询,即可在Hadoop、NoSQL和Oracle数据库中透明地访问所有数据。OracleBig Data SQL 1.1将Hadoop和Oracle数据库之间的集成变得更加紧密,且查询性能较此前的版本提高了40%。
Oracle NoSQLDatabase 3.2.5是一个适应性解决方案,能够让开发人员创建高性能的新一代应用。该最新版本提供了可预测的低延迟,RESTfulAPI和基于Thrift的CAPI,并与Oracle大数据平台实现了集成。基于OracleBig Data SQL,OracleNoSQL Database 3.2.5还支持数据定义语言(DDL),使得用SQL来查询NoSQL数据变得更加容易。
Oracle Big Data Discovery现已上市
Oracle Big Data Discovery 利用Hadoop使用户通过单一产品即可快速、轻松地将原始数据转变成可执行的业务洞察。
像在线购物一样寻找和探索大数据:Oracle Big Data Discovery提供了令人瞩目的视觉界面,以帮助在Hadoop中发现和探索原始数据。它类似于便笺本一样,可揭示数据属性与数据组合之间的统计相关性,进而评估该数据是否具有潜力以及是否值得进一步研究。通过常见的导航栏及强大的搜索功能,用户可轻松浏览交互性的可视化数据目录。
大规模转化并丰富数据:使用Hadoop的原始数据进行分析之前需要一系列的准备工作。OracleBig Data Discovery通过一个直观的类似电子表格的方式,缩短了冗长的准备周期,同时简化了数据矛盾。用户无需更换工具或者书写编码,即可增强数据可视化,从而将更多的时间投入在数据分析上。
挖掘和分享以发现新价值: 数据的挖掘和分析与数据准备需要用不同的工具。OracleBig Data Discovery让用户能够无缝地从数据准备迁移到数据分析,只需一次点击即可分享数据洞察。用户利用数据结果加强合作,将原数据集传回Hadoop,还可在如Pig、Hive和Python等其他工具中进一步使用数据结果。
将大数据访问权限开放给更多职能团队:大数据通常只掌握在一小部分数据科学家手中,而这一群体掌握着丰富的技术能力、人才稀缺且人力成本高。OracleBig Data Discovery使得大数据的管理更加简单,并可让包括分析团队和业务用户在内的更多人员轻松访问。它还集成了现有的大数据工具,让企业能够轻松地扩展其大数据团队,并从其投入的人力资本和数据资产中获得最大价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01