京公网安备 11010802034615号
经营许可证编号:京B2-20210330
发展大数据应升级为国家战略_数据分析师培训
大数据时代的到来,让“数据即资产”成为新的全球共识,发展大数据已经成为全球趋势,国家竞争焦点正从对资本、土地、人口、资源/能源的争夺转向对大数据的争夺,大数据颠覆性地改变全球战略格局、国际安全态势、国家治理架构和资源配置模式,引发了巨大的经济社会变革。对于中国而言,只有将发展大数据上升为国家重大发展 战略、上升为提升国家治理体系与治理能力现代化的层面,才能实现“变道超车”。
大数据(Big Data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
全球数据正呈现出惊人的增长态势。根据IBM公司估算,人类自有史以来至2003年所创造的信息量为5EB,而到2011年,人类每两天就能产生5EB的信息量。互联网数据中心(IDC)认为,数据产生成本的下降、投资规模的增加和数据存储能力的增长,最终导致了全球数据增速符合“大数据摩尔定律”,即全球数据量大约每两年翻一番。预计到2020年,全球需要管理的数据量将达到35ZB,是2010年的29倍。
我国大数据应用
前景广阔
从我国情况看,随着信息化普及程度和应用水平的提升,金融、交通、电信等重点行业和医保、社保、海关等重要领域已经实现或逐步实现了大量、海量业务数据的集中。中国拥有全球第一的人口数、互联网用户数和移动互联网用户数,大数据应用前景广阔,成为全球最重要的大数据市场之一,已经成为名副其实的“世界数据中心”。根据工业和信息化部电子科学技术情报研究所的调查,2011年中国电信、金融、医疗、文化等国家重要基础数据总量约为900PB。中国移动互联网流量在过去18个月中增加了10倍,占到全球互联网流量的10%;淘宝网每天交易达数千万笔,其单日数据产生量超过50TB,存储量超过40PB;百度每天大约要处理60亿次搜索请求,数据量达到几十PB,每日新增数据10TB;上海证券交易所每秒处理近9万笔业务,每日成交笔数达到3亿笔以上;中国联通用户上网记录达每秒83万条,即每月1万亿条,对应数据量为每月300TB。
然而,相比领先国家,中国仍面临诸多战略风险与挑战,阻碍大数据在国家治理层面上的应用:
一是缺乏比较明晰的大数据战略顶层设计,大数据作为战略性资源地位尚未凸显。我国大数据战略的国家顶层设计尚未出台,作为基础性资产、以及国家/国民财富的重要地位尚未凸显,特别是与之适应的生产关系、制度安排等仍处于空白。
二是条块分割体制壁垒和“信息孤岛”,阻碍国家治理中的数据开放和共享。围墙里的大数据注定成为死数据。目前,我国金融信用信息基础数据库已经为1859.6万户企业和其他组织及8.2亿自然人建立了信用档案,但这些数据第三方机构很难获得。长期以来,由于条块分割管理体制限制,各级政府部门间的信息网络往往自成体系、相互割裂,数据难以实现互通共享,导致政府掌握的大数据大都处于割裂、闲置和休眠状态。同时,由于政府部门业务管理信息系统开发和建设的“部门化”,政府信息系统出现“系统林立”和分裂状态,公共信息资源重复采集现象严重,政府治理成本偏高。
三是传统治理思维和治理体制在大数据时代明显不适应,数据治国的意识较为滞后。世界范围内,大数据正重构政府、市场、社会三者之间关系模式,使国家治理结构实现从国家独大的治理结构转向多元共治,然而,我国现有国家治理体制已明显不适应大数据时代新趋势的变化,不少政府部门尚未意识到利用大数据改造传统政府治理和政府流程再造的革命性影响。
四是法治建设滞后,维护“数据主权”的法律标准框架严重缺失。我国大数据法治建设明显滞后,用于规范、界定“数据主权”和数据资产的相关法律普遍缺失,缺乏有效的大数据思维和法律框架。
五是全球大数据战略博弈升级,我国面临较大数据安全与数据防御风险。当前,借助大数据革命,美国等发达国家全球数据监控能力升级,造成我国数据安全和数据防御风险上升。根据“棱镜门”事件披露信息,美国政府和大数据公司紧密结成“美国数据情报联合体”,共同对全球数据空间进行整体性监控分析,构筑“数据霸权”。美国 “八大金刚”几乎渗透到中国政府、海关、邮政、金融、铁路、民航等各个领域,给国家治理带来异常严峻的数据安全隐患。
大数据革命
关乎中国未来
大数据革命才刚刚开始,这是一场关乎中国前途未来,涉及利益深刻调整的革命,要有大思路、大举措。建议国家尽快打破“碎片化”格局,规划“大数据治国”中长期路线图与实施重点、目标、路径,统筹布局,加快大数据发展核心技术研发,推进大数据开放、共享以及安全方面的相关立法与标准制定,建立完善大数据产业的市场化资源配置模式,以及“互联互通、共享共治”的制度体系,真正抢占新的全球科技革命和产业革命的战略机遇期,重构国家综合竞争优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20