
大数据人才市场薪酬报告_数据分析师
据idc统计,全球数据总量以每两年翻一番的速度爆发式增长,与此同时自然也催生出大量与大数据处理相关的职位。这群人在国外被称为数据科学家(datascientist),他们通过对数据的挖掘分析,来影响企业的商业决策。
不过在国内,大数据的应用才刚刚萌芽,人才市场还不那么成熟。很多公司会根据已有的资源和短板,招聘能和现有团队互补的人才。有的强调数据库编程、有的突出统计学知识、有的则要求有咨询公司或投行相关的经验,所以类型众多,诸如数据挖掘工程师、数据研究员、用户分析专家……不胜其数。
归根结底我们要了解企业对数据人才的需求源自企业的定位,(CDA数据分析师培训)专门的数据公司以及大公司的数据部门有完整的数据采集、数据挖掘、数据分析、数据结构的整套体系,而一般的企业多数只需要数据分析师,提供决策辅助和咨询。
所以,繁多的类型背后,万变不离其宗的,是数据相关职位的职能,按照职能我们可以分为四类,对应的专业和职责分别是:
1、数据分析
专业:统计学、数学、计算机、信息管理、金融。
主要职责:运用工具,提取、分析、呈现数据,实现数据的商业意义。
2、数据挖掘
专业:计算机、统计学、数学。
主要职责:机器学习,算法实现。
3、数据工程师
专业:计算机、数学、统计学。
主要职责:开发运用简单数据工具,实现数据建模等功能,需要业务理解。
4、数据架构师
专业:计算机、数学。
主要职责:高级算法设计与优化、数据相关系统设计与优化,需要有垂直行业经验。
一、数据分析相关职位
首先,来看一下数据分析师的情况。这个职位的主要技能是1(数据分析),附带2(数据挖掘),有少量的3(运用已有工具建模)的需求。因为企业对这个职位的要求是作为业务部门的参考与辅助,因此希望是多面手。title包括数据分析师(员/专员)、数据运营主管等。下面以深圳为例:
二、数据挖掘相关职位
接下来我们来看下数据挖掘工程师的情况。合格的数据挖掘工程师通常需要有3年以上工作经验。一二线城市的大中型企业和数据咨询公司有此类独立职位。主要技能为2和3(数据挖掘和平台应用)。下面以深圳为例:
三、数据工程师相关职位
接下来,我们来看下数据工程师的情况。这是比较复杂的情况,产生的title不计其数,但是归根结底,都是在已有平台和工具的基础上实现开发和运用。大部分我们见到的“数据**工程师”其实都归属此类。技能要求为3(数据结构和算法,分布式计算以及数据库知识等)。下面以深圳为例:
四、数据架构师相关职位
最后,我们来看看数据架构师,这是整个数据产业上的顶端职位,最终指向也是——首席数据官/架构专家。这个职位一般是猎头职位,要求是4(“软件工程技能牛过多数人的统计学家”、高级算法设计与优化、数据相关系统设计与优化,需要有垂直行业经验)。就是既要懂行业,又要技术资历(最少3年,一般5年),所以空缺巨大。
下面以深圳为例:
综上所述,数据相关的职位,指向的是数据采集、数据挖掘、数据分析、数据结构四大技能,即使初级职位,要求也是一专多能。高级职位则要求每个模块都有理解,对统计、编程、行业理解都要求很高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10