
手机上的大数据2:手机大数据的特点
随着移动设备的功能越来越强大,移动互联网与传统互联网之间的差异愈发不容忽视。新型的技术以及数据分析方案都展现一个全新的网络模式。我们需要打破一些固有的思维,重新审视手机上的大数据。
移动互联网具有互联网的很多特征,但移动互联网作为一个新生事物,也有其自身的“不同”。
互联网造就了宅男宅女,把人们拴在了电脑桌前;而移动互联网又解放了宅男宅女,把他们又重新放回了现实世界中去。
在车站等车时,拿着手机在翻阅小说;站在商圈里,拿着手机搜寻热点商家;或者是在睡觉前,拿着PAD看看有什么娱乐信息,看看喜欢的文章,既拉长了用户们覆盖的范围,也拓宽了其使用网络的时间。
无疑,相对于成熟互联网应用而言,移动互联网的应用主要还是在填补上下班、办事途中,晚上睡觉前等碎片化时间。因此,“打发时间”类应用也跻身三大类主要应用之一,而且受众面极广。
手机上的碎片化
虽然受众面广,时间占比高,但由于“碎片”的特点,目前还没有一个很好的盈利模式将其利用起来。当然,这也是一个市场发展必然要经历的过程。先让尽可能多的用户用起来吧,暂时先不要去考虑如何盈利,为时尚早。
手机阅读的使用时间
手机视频时间
可以看到,在晚上十点至十一点手机阅读和手机视频都达到了高峰,典型的睡觉前时间,从一个侧面反映了手机应用时间与互联网应用的不同。
移动互联网绝不仅是有线的业务延展到无线那么简单。势必会产生一些呈几何图形增长的业务,充分发挥移动互联网的特点,比如LBS,比如O2O。
移动互联网的发展使得一些本来看似不相关的东西串了起来,我隐隐有种感觉。元芳,你怎么看?
所以,移动互联网的数据处理巨绝不简单是统计分析,而是多种更为先进的算法来找到隐藏在层层迷雾下面的真相。
Web Analytics(网站分析)已经被各种互联网企业、电子商务企业、以及传统行业的企业网站广泛使用。而Mobile Analytics却还是一个新鲜的事物。它和Web Analytics有继承的关系,但是又有明显的区别。
(通常所说的Mobile Analytics主要指Mobile Application Analytics,也就是各种移动设备上的原生应用的数据统计分析。)
在Web Analytics中,绝大部分情况下用户是基于浏览器的cookie进行统计的。
也就是说,其实使用同一台电脑的同一个浏览器上网的两个人会被计为一个独立用户(Unique Visitor),而同时使用同一台电脑的IE和Chrome浏览器的同一个人却会被计为两个独立用户。Mobile Analytics的对象却不同,它是按照移动设备(例如手机)来统计的,绝大部分情况下每个移动设备的使用者是唯一的。所以它比Web Analytics更能精确到人,这意味着可以在此基础上提供更个性化的服务和更精准的营销。
手机上的数据分析
这还不是Mobile Analytics唯一让人着迷的地方。浏览器的Cookie很容易被清除或覆盖,但是基于设备的统计相对更为稳定和长久。这使得用户细分(Segmentation)和断代分析(Cohort Analytics)可以更加准确和实用。我们可以通过某种条件(例如当年3月份的新增用户并且使用时长超过20分钟的)筛选出一批用户,分析他们的行为模式。
Mobile Analytics和Web Analytics还有个很大的区别是,前者统计数据时,有可能是离线或者信号不好、网络不稳定的状态,导致统计数据无法立即上传。等到数据能上传时,可能已经隔了几小时到几天不等。而Web Analytics则不会出现这种情况,不能上网就无法访问网站,如果能上网站但是不能连接到统计服务器,这部分统计数据也不会被重新发送。这使得Mobile Analytics需要更复杂的数据补偿策略。
从数据量上来说,Mobile Analytics一点都不比Web Analytics少。它需要统计很多Web Analytics所没有的数据,例如设备型号、应用版本、推广渠道、甚至位置信息,同时还有很多开发者自定义的事件。而移动设备(含平板电脑)总量的增长率远远大于PC(含笔记本电脑)总量的增长率,每个移动设备上的移动应用个数的增长也非常快。所以提供公共服务的Mobile Analytics平台都是典型的大数据应用场景。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03