
数据化比大数据更靠谱_数据分析师培训
数据是个好东西,它可以反映用户过去的行为轨迹,也可以预测用户将来的行为倾向。随着数据分析工具与数据挖掘渠道的日益丰富与多样化,数据存量越来越大,数据对企业也越来越重要。这直接催生了大数据的概念火热与流行,但对很多实体企业与传统行业而言,大数据仍显得陌生,甚至不知道大数据怎么用。
我也一直思考,实体企业与传统行业该如何迎接并立足于大数据时代。在接触一些企业主、金融分析师包括数据管理方面的专业人士之后,我认为:当前阶段,与其意淫大数据,不如扎扎实实地完成企业自身业务的数据化(这就像电子商务,核心还是商务电子化一样)。
首先,企业最终想要的是用户,而不是大数据。大数据只是为企业更好地粘住用户、开拓市场提供了一种决策支撑。
其次,海量数据本身并没有太大价值,它更是一种对用户既有行为的量化与累积。我们拿过去某一时段的数据,来预估一个新时段的用户行为,本身就有待推敲(当然,也不能说他完全没有价值,这就像经验重要,但经验往往不可靠)。
第三,比已经存在的大数据更重要的,是弄清楚这些数据是通过什么方式产生的,从哪些领域产生的,会对经营行为产生哪些影响,进而倒推出数据化与企业经营(员工管理)、用户行为的内在逻辑。
第四,数据化不会一蹴而就。它既涉及到对现在业务指标的量化处理,也有对企业员工的量化考核,它一定是细节而具体的,而且用数据说话,用数据决策,也是一种需要培养的决策思维。
第五,短期内,大数据还不能覆盖到所有行业与企业,云计算等概念对大多数企业而言还很遥远,还是要把重点聚焦在企业自身的业务模式上。
那么,企业该如何着手数据化呢?我主要想到以下几点。
第一、经营业绩数据化。
这一点是最好理解也是最容易被忽略的。随着国内企业的财务报表制度的愈加完善,如何让非财务人员(尤其是中层以上管理者)对企业的整体经营业绩保持一个数据敏感度,并能根据不同时期经营业绩的变化来调整策略,成为新的要求。
据我了解,目前国内的不少数企业的财务报表仍然流于形式,经营管理多依赖于决策者自身的经验,这必然会增加企业经营的风险。所以我建议,企业负责人首先要重视对整体经营业绩的数据化。分部门、分阶段(比如惯例上的季报,能不能变成内部的月报)、分重点对企业整体经营情况进行数据公开,供决策者参考,并培养决策者的数据意识。并通过更加合理与便捷的渠道让企业管理者实时了解企业的经营业绩等等。
尤其随着国际化的进一步加深,企业的经营业绩将受到更多外部因素的影响,如何建立有效的外部数据观测模型,将成为企业降低经营风险的重要手段。
第二、业务模式数据化。
目前很多企业不是不想利用大数据,而是自身业务模式难以产生有效数据,这就对企业自身业务模式的数据化提出了要求。
拿传统零售业来说,尽管也有一些会员管理,但是由于能够收集的信息很有限。比如顾客在这个门店什么时候来过一次,什么时候浏览过哪个产品,浏览时是什么感觉,甚至包括表情等等,这些数据很难通过传统的线下方式进行收集,也很难与他每次光临门店的信息进行对比,很难快速地在他下次光顾的时候找到一个合适的东西推荐给他。现在有很多的零售行业,他们有很多好一些的方法。那么店铺里面大家知道这个摄像的设备是很普通的,利用这些设想的设备,利用采集的图象的识别和分析,脸部的表情,浏览过哪些商品的记录和分析,这些信息的采集,就能够很好地帮助店里面的人员来分析顾客整个构成的情况,我发现很多实体店在这个方面有很多的想法,希望有这样的IT公司来帮他实现这样的IT支撑解决方案。
同时,现在的实体零售业正在经历一场转型——实体店和线上互动——实体店只是变成一个展示、宣传的平台,它的实际销售行为很多是发生在网上的,也就不再需要那么多的实体店,进而可以把实体店开在一些更方便顾客到达的地方。顾客在实体店里面看的东西,想买的时候可以到网上买,还能送货上门。
目前来看,类似零售业这种有着海量用户的业务模式,都将不可避免完成向数据化。
第三、用户行为数据化。
我想这一点是大家最为看重的,也是当前时期应用最为广泛的。正如前文所言,企业最终想要的是用户。那么科学分析用户行为,自然是了解用户、贴近用户最为有效的方式。不过,相对于电子商务等线上企业而言,传统行业与实体企业的用户行为数据化并不乐观,操作性也相对较差。很多企业的用户行为分析流于形式,并不能为市场营销与产品改进提供真正帮助。我举一个旅游公司的例子。
很多人都知道中坤集团(黄怒波的企业),做旅游地产的,其中一个是北京的门头沟项目,中坤跟门头沟区政府合作,把整个门头沟的景点数据化,有很多地方都装上摄象头。因为是旅游景点,大家比较关注每一个地方的风土人情、历史,甚至是哪一个小山包在历史上曾经有过一些什么故事。以前的做法是通过培训一批导游,然后给游客介绍,让游客在这个过程中来了解一些的东西,引起一些思考。
后来他发现这种模式比较老套,很多游客现在希望自助游,就是我自己在山上面找,这样一来这些故事就没有一个合适的方式来提供给游客。所以他就把所有的景点、把所有的壁画之类的文物景观都数字化,历史典故可以通过无线的方式——在游客的智能手机上安装一个简单的软件,游客走到哪里,可以选择性地查看当时这个地方有什么事情,同时游客开着车子在这个旅游景点转一圈,在不同的地方都可以通过摄像头给游客拍一些照片。这样游客离开景点的时候,可以获赠一个相册——在这个景点里面各个地方我给你拍的照片,以及旅游的路线,选择听过的一些故事等等。
通过这样的方式使得游客和景点的黏性更强了,关系拉得更近了。游客去给其他朋友介绍这些景点的时候,也就有很多故事可以讲,慢慢发现这种方式,对游客来说,是一种近似病毒式的传播,比一般的营销的效果更好,这是旅游行业转型的一个例子。
第四、员工管理数据化。
任何一个公司的员工管理,都集中体现在两方面,一是如何促进员工成长,也可以说是更加理解公司的业务模式,进而提升业绩。二是如何对员工的成长进行评价,也就是考核。我想这两方面,都可以通过一个包含各种考核与激励要素的数据库的建立,来更好的实现。在此只是抛砖引玉,相信我们的人力资源管理高手,完全可以根据自己的工作需要,完成数据化。
当然,数据化的另一大关键,就是如何与(移动)互联网与物联网有效融合。因为目前为止,移动互联网为我们提供了最好的,与用户粘在一起并充分挖掘用户数据的机会。无论是移动、社交还是本地化,都释放出了海量的数据,也就有着重大的挖掘空间。
同时,我还要强调一点,大数据在更多程度上是对既有行为的判定,对已知经验的固化,在预测方面,应用大数据还应十分谨慎。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14