京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据:在信息的海洋里寻找洞见_数据分析师
什么是 「大数据」 (Big data)?研究机构 Gartner 给出了这样的定义。「大数据」是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据是数据分析的前沿技术。从各种类型的数据中,快速获得有价值信息的能力,就是大数据技术,这也正是促使大数据技术具备走向众多企业的潜力。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理,通过「加工」实现数据的「增值」。
近 10 年来,政府和企业在世界范围内收集了大量互联网用户的数据,不仅仅是姓名和数字,而是一连串数据—大数据。 国际数据公司 (International Data Corporation) 最近预测大数据行业复合年增长率将达到 26.4%,在 2018 年达到 415 亿美元。这意味着越来越多的企业和组织将花费巨资研究分析大数据并获得有价值的信息。负责美国宇航局在加州帕萨迪纳市的喷气推进实验室大数据的 Chris Mattmann 表示,NASA 总共管理着几百 PB 容量的数据,几乎达到 1EB。
1 EB(Exabyte,艾可萨字节或艾字节) 是多少容量?这意味着 10 亿 GB,像这样:1000000000 GB。
这些巨大的数据扩散的速度如此之快以至于传统的数据技术跟不上它们的节奏。TNS 市场研究公司 (Taylor Nelson Sofres)亚太地区首席执行官 Chris Riquier 告诉我大数据对市场研究有非常大的影响。Riquier 表示,市场研究是建立在调研和问卷调查之上的。他讲道,在过去,调研的过程或花费数周的时间,最终用呈现的数据来分析企业规模和相关信息,通过整合社交媒体数据、搜索数据以及其他形式的大数据来做成报告,而现在我们有机会来「重新思考研究是如何完成的。」Riquier 表示,由于大数据,我们对「市场和决策力的反应已经发生了很大的变化。」
在今天的数字世界里,大数据通过跨行业、政府、科学、公共健康和学术界来发现相关性。在过去,从信息里的海洋里获得有用的数据信息对大多数人来说一直是可望而不可即的事情。直到去年,哈佛杂志在 2014 年刊登的一篇文章,标题为「为什么大数据是一桩大买卖?」( Why「Big Data」is a Big Deal ),文中表示通过改进的统计和计算方法, 包括关联数据集、可视化数据以及创建「大算法」等这些关键的创新,能使我们快速处理这些数据并为我们所用。从物理学家到文天学家,他们长期与大数据打交道,数据科学家和社会学家通过结合定量与定性的方法来从大数据中获得有用的信息。实际上,大数据正在创造一个新领域,哈佛大学工程与应用科学学院为此开设数据科学硕士学位。
在《大数据-一场改变我们生活、工作和思考的革命》一书中,Viktor Mayer-Schonberger 和 Kenneth Cukier 谈到企业是如何改变方式来做出决策—基于对大数据的分析。例如,谷歌通过其收集的大数据来预测预测禽流感的散布,其反应速度比美国疾病控制中心还要迅速。
据 华尔街日报 最近的一篇文章,加拿大银行使用由开源软件开发商 Apache 开发的 Hadoop 来储存和处理大数据,并能识别洗钱和欺诈等犯罪行为。
大数据之于普通人
哈佛、NASA、谷歌和 Apache 利用大数据的分析能力在世界范围内带来先进的技术,但就像我之前提到的,这并不意味着科学家们能很快从大数据中受益。让我们来看一看一些企业和公司在收集和管理大数据的几个方面。
其中大数据最主要的一个用途就是在市场中的搜索引擎优化(SEO)。公司和企业能利用搜索引擎公司如谷歌和必应提供的工具,结合不同的社交媒体数据,收集有用的信息来进行网络营销。咨询公司 Hall Analysis 的研究员 Joe Hall 主要研究搜索引擎优化和大数据,他表示有两种方法能使用大数据来处理搜索引擎优化。
他说:「第一种是处理与大数据集有关联的业务。在大多数情况下这意昧着大品牌和大企业能获得非常多的数据。」Hall 引用一个例子,一个客户有 1600 万个反向链接,或者从其他网站链接指向客户的网站。这些链接对谷歌和其他搜索引擎来说是一个非常重要的排名因素。他解释说,数据集的大小需要像模式分析那样有强大的处理各种任务的能力,并在这种水准下为反向链接分析改变规则。
Hall 表示,第二种方法是公司能利用大数据使搜索引擎优化变得更具态势感知能力。这表明使用相关性研究能更好了解排名因素以及用户点击率、排名结果页面等用户行为分析。这两种分析类型都需要大数据分析来达到最终的目的,并能有效帮助 SEO 专家开阔一个「更大的局面」。
另一方面是大数据在商业活动中能获得用户的忠诚度。举个例子,比如我是一个创业公司的创始人,在我成功运作公司的第一年后,公司业绩蒸蒸日上,于是我给自己放个大假,去夏威夷度假。但在机场安检的时候,检票员告知我由于我的箱子超重,我需要付额外的费用。但是检票员可能不知道,作为一个成功创业公司的创始人和 CEO,我和我的员工将会在全世界各大城市奔波,为航空公司贡献更多的里程。如果航空公司使用大数据整合来自信用卡公司、社交媒体源、博客、酒店等相关信息,他们会可能取消这样的额外收费还能获得一个忠诚的客户。
无论是大公司的 CEO 或是研究癌症的医生,或是一个淘宝店老板,使用大数据分析都将会为他们带来有价值的信息。当我们进入到这样一个时代:基于大数据分析来作出决策,这将不可避免地改变我们思考世界的方式。
今天这一代人出生在数字化时代。而下一代人将进入大数据时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01