京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用R处理大数据集_数据分析师
用R处理大数据集
JAN 1ST, 2012
| COMMENTS
本文翻译自R in Action
的附录G,如果对该书感兴趣,请自行购买或去图书馆阅读。
R会把所有的对象读存入虚拟内存中。对我们大多数用户来说,这种设计可以提高与R相互的速度,但是当分析大数据集时,这种设计会降低程序运行速度有时还会产生跟内存相关的错误。
内存限制主要取决于R的build版(32位还是64位),而在32位的windows下,取决于操作系统的版本。以cannot allocate vectoe of size开头的出错信息表示无法分配充足的连续内存,而以cannot allocate vector of length开头的出错信息表示超越了地址限制(address limit)。在处理大数据集时,应尽量使用64位版的R。对于各种build版,向量中的元素个数最大为2147483647(请自行?Memory)。
在处理大数据集时有三方面应该考虑:(a)提高程序的效率,保证执行速度;(b)把数据储存在外部,以解决内存限制问题;(c)使用专门的统计方法来有效处理大数据量的问题。
下面将分别讨论。
下面几条编程技巧来可以提高处理大数据集时的效率
函数族把外部数据导入数据框时,尽量显式设定colClasses和nrows选项,设定comment.char = "",把不需要的列设置成NULL。这样可以减少占用的内存,同时加快处理速度。将外部数据导入矩阵时,使用scan()函数;
可以删除内存中的所有对象。删除指定的对象可以用rm(object);
,被墙)中提到,使用函数.ls.objects()列出工作区内的对象占用的内存大小。这个函数会帮助你找到吃内存的大家伙。
和summaryRprof()函数完成这项工作。system.time()函数也可以帮助你。profr 和 prooftools 包提供了若干函数来帮助分析profile的输出。
处理大数据集,提高代码效率只能解决一部分问题。你也可以把数据存在外部存储并使用专门的统计分析方法。
有几种包可以实现在内存之外存储数据。解决之道是把数据保存在外部数据库或者硬盘里的二进制文件中,然后在需要的时候部分地读取。下表描述了几种有用的包:
包
描述
ff
提供了一种数据结构,保存在硬盘中,但是操作起来就如同在内存中一样
bigmemory
支持大规模矩阵的创建、储存、读取和操作。矩阵被分配到共享内存或内存映射的文件中(memory-mapped files)
filehash
实现了简单的key-value数据库,在其中特征字符串key与存储在硬盘中的数据value相关联。
ncdf, ncdf4
Provides an interface to Unidata netCDF data files.
RODBC, RMySQL,ROracle, RPostgreSQL,RSQLite
可以用这些包读取外部关系数据库管理系统的数据
上面的包可以帮助克服R的内存限制。除此以外,当需要在有限时间内分析大数据集时,使用专门方法也是必须的。一些有用的方法将在下面介绍。
R提供了几种分析大数据集的包:
和 speedglm 包可以针对大数据集有效地拟合线性和广义线性模型。在处理大规模数据集时,这两个包提供了类似lm()和glm()的功能。
包可产生大规模矩阵,一些包可以提供分析这些大规模矩阵的函数。bigannalytics 包提供了k-means聚类、行统计量(column statistics)和一个对biglm()的封装。bigtabulate 包提供了table()、split()和tapply()的功能,bigalgebra 包提供了高等线性代数的函数。
包提供了最小角回归(least-angle regression)、lasso以及针对大数据集的逐步回归,数据集因太大而不能读入到内存中,这时候要配合 ff 包使用。
包可以用来处理大数字(大于2^1024)
处理从GB到TB级的数据对于任何数据都是极大的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29