京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:“互联网+”教育_数据分析师
《与大数据同行:学习和教育的未来》并不是那么容易读明白的书,富于感性色彩的六个标题语让我们在略读阶段经常迷失,在精读时,我们不妨尝试跟着作者的思路看看“互联网+”教育与大数据有效应用之间的精彩纷呈。数据同行:学习和教育的未来》并不是那么容易读明白的书,富于感性色彩的六个标题语让我们在略读阶段经常迷失,在精读时,我们不妨尝试跟着作者的思路看看“互联网+”教育与大数据有效应用之间的精彩纷呈。
1、关于教师的角色转变
“大数据帮助教师确定最有效的教学方式,这非但不会剥夺他们的工作,反而会提高工作的效率和趣味性”。“教师不再需要凭借主观判断选择最适合教学的书籍,大数据分析将指引他们选出最有效的、支持进一步完善和私人定制的教材……教材是可以进行个性化处理的”。教育变革时代教师角色的转变是很多人的共识。
2、关于学生的学习
“然而我们在其他行业见到的类似的多样性和定制化,尚未在教育领域大规模地显现”。“学生们受到同样的对待、使用同样的教材、做同样的习题集,这不能称为个性化学习”。“我们可以对知识的传递进行个性化处理,使之更好地适应特定的学习环境、偏好和学生能力”。
学习对每个个体而言都不是一个线性进步的过程,从大数据中,人们可以发现一个人在学习过程中所经历的所有学习体验和学习结果,对教育者来说,有可能了解学生学习的探索和发现历程,提供更有效的学习支持;对学生自己来说,可以有效地反思学习策略与方法,并不断完善它们;对家长而言,了解自己的孩子,发现孩子的长处,也能够更好地帮助孩子树立面对未来的信心……
3、关于大数据的分析视角
“质量控制通常交由专门机构负责,其任务是还原事实,而不是把情况描述成管理者希望的样子”。“大数据有能力将数据的生成与处理、利用分隔开来——在信息上与教育松绑,同时将学校和课本转化为数据平台,促进学习的改善”。
从教育的视角看,大数据分析主要关注两大领域:学习领域和学术领域。如果期望从大数据中获得关于学生成长的全面数据,分析的视角十分重要。姜强等人认为:“教育中的大数据分析应以崭新的思维和技术重点对学习过程中的微观表现进行测量,从多个维度,如努力程度、学习态度、智力水平、领域能力、交互协作等深层次挖掘有价值数据信息,揭示其中隐藏的学习行为等模式并以可视化方式呈现。”这其实也反映了基于大数据的学习分析是对学习者群体与个体的众多方面进行全面的数据整合,发现规律,根据规律提出合理的预测,从而指导学习者改进学习。
4、关于基于大数据的教育创新
“当下面临的变革并不是技术层面上的。这种改变影响着我们能够收集的数据类型以及我们对这些数据的挖掘方式,促使我们对学习、教学和获取知识的过程展开全新的理解”。
不论什么时代,变革往往都不是线性的,教育变革也不是一级一级向上升的过程。尽管今天的在线教育已经成为教育创新的孵化器,但是仅仅依靠在线教育去思考教育创新是远远不够的。
5、关于大数据带来的风险
“它还有可能加深教育鸿沟,使社会和经济上的鸿沟持续存在,更多的妇女和少数族裔将被上层淘汰”。
和任何崛起的技术一样,大数据带来的风险也是显而易见的,如谁拥有大数据、个人隐私如何保护、从哪个视角去分析大数据、从大数据中获得的信息如何被恰当分析并有效反馈给学习者和公众等,都是应用大数据会碰到的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20