京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“数据创新”时代:大数据有大智慧_数据分析师
除了“物联网”和“云计算”,IT业又出现了一个新名词——大数据。如今,大数据甚至引起了工商界和金融界的高度关注,人们认为大数据将为数据应用和决策支持提供有效帮助,成为物联网和云计算内在的灵魂和必然的发展趋势。
大数据目前尚没有统一的定义,通常被认为是一种数据量很大、数据形式多样化的非结构化数据。
这里我们先弄清楚几个概念,结构化数据、半结构化数据和非结构化数据。结构化数据可以在关系数据库中找到,多年来一直主导着IT应用;半结构化数据包括电子邮件、文字处理文件以及大量发布在网络上的新闻等,以内容为基础,这也是谷歌和百度存在的理由;而非结构化数据广泛存在于社交网络、物联网、电子商务之中。伴随着社交网络、移动计算和传感器等新技术不断产生,有报告称,超过85%的数据属于非结构化数据。
很多人相信这些庞大的异构数据中蕴含着巨大财富——企业如果能在这些非结构化数据中挖掘知识并与业务融合,决策的依据将会更加全面和准确;在科学、体育、广告和公共卫生等其他领域中,也有着向数据驱动型的发现和决策方式转变的趋势。
大数据的推动因素主要来自于一些大型IT公司,如谷歌、亚马逊、中国移动、阿里巴巴等,他们需要以更加优化的方式存储和分析数据。此外,还有一些来自健康医疗、地理空间遥感和数字媒体等行业的大数据需求。据市场研究公司统计,未来10年里预计数字信息总量将在2009年到2020年增长44倍,全球数据使用量将达到大约35.2ZB(1ZB=10亿TB)。
大数据呈现出“4V+1C”的特点:(1)Variety,大数据种类繁多,在编码方式、数据格式、应用特征等多个方面存在差异性,多信息源并发形成大量的异构数据;(2)Volume,通过各种设备产生的海量数据,其数据规模极为庞大,远大于目前互联网上的信息流量,PB级别将是常态;(3)Velocity,涉及到感知、传输、决策、控制开放式循环的大数据,对数据实时处理有着极高的要求,通过传统数据库查询方式得到的“当前结果”很可能已经没有价值;(4)Vitality,数据持续到达,并且只有在特定时间和空间中才有意义;(5)Complexity,通过数据库处理持久存储的数据不再适用于大数据处理,需要有新的方法来满足异构数据统一接入和实时数据处理的需求。
Apache的Hadoop已成为大数据行业发展背后的技术推动力,Hive和Pig等技术也经常被提到。同时,旨在从非结构化数据的庞大宝藏中获得知识和洞察力的计算机工具也正在迅速发展中。这些工具的发展依赖于不断进步的人工智能技术,比如自然语言处理、模式识别和机器学习等。
可以预见,未来一两年内,将会涌现大量能够处理大型非结构化数据的工具和平台。除了Hadoop的批量化处理方式之外,基于流数据处理的方式也将在实时数据分析应用中发挥作用。此外,大数据热潮还将对可视化的理解和需求提出新的挑战。可视化在数据工作流中将同时起到解释和探索的作用,数据科学家会将可视化作为寻求问题以及探索数据集新特性的一种方式。
由于大数据的技术门槛较高,因此目前在该领域展开竞争的大都是在数据存储、分析等领域有着传统优势的厂商。2012年1月,Oracle正式发布Oracle大数据机。IBM在大数据领域的优势则在于全面,而机器人“沃森”在人机大战中获胜,更成为IBM为其大数据分析解决方案加分的例证。
中国市场在这个新兴领域非常重要。中国有庞大的人口基数,IT基础设施也比较成熟,数据量是不可想象的。乐观的人已经看到了其中的机会,不论是出于应对海量数据的需要进行系统升级,还是试图从数据中挖掘价值的冲动,都有可能迎来一个充满智慧的“数据创新”时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27