
“大数据”时代 呼唤“大安全”_数据分析师
美国国家安全局(NSA)一直进行国内信息监视活动、已收集数以百万计的美国人的信息数据的消息被披露后,在国际上激起轩然大波,欧盟已经表示严重关切。传统上西方人对个人隐私有着更强烈的保护意识,也更敏感,于是一时就出现了乔治·奥威尔的小说《一九八四》热卖的景象,仿佛一个高高在上的“老大哥”确实在窥视公众。这场风波也缓解了中国的压力——斯诺登在香港“叛逃”并自曝“棱镜”计划内幕,一下子在网络安全问题上改变了中国和美国的攻守地位。
其实自从9·11恐怖袭击以来,美国情报机构在世界各地从事间谍活动,同时加强对本土公民的信息监控以搜寻与恐怖主义有关的信息,早已不是什么秘密,只是在过去人们难以窥视其内幕。而且,即使在更多情况被披露后,公众也很难证明政府的监控超出了法律许可的范围。所以,风波将会过去,问题将会留存。
世界正在进入一个“大数据”时代。英国人迈尔-舍恩伯格和肯尼斯?库克耶写的《大数据时代》认为,一个大规模生产、分享和应用数据的时代正在开始,大数据时代的口号是“一切皆可量化”,包括人们在社交网络上的沟通:Facebook的“社交图谱”将关系数据化;Twitter通过创新,让人们能轻易记录和分享他们零散的想法,从而实现了过去不可想象的情绪的数据化。
“大数据”时代也带来信息存储和管理的集中化。这两位作者写道,Facebook在2012年拥有大约10亿用户,他们通过上千亿的朋友关系网相互连接,这个巨大的社交网络覆盖了大约10%的全球人口,而这所有的关系和活动在数据化之后都为一家公司所掌控,这么一来,对“大数据”可能带来的风险的指责就不是空穴来风了。
你在谷歌上面的搜索记录,你最喜欢阅读哪些产品的广告,你对那种类型的旅游地最感兴趣,你通常去医院看哪些方面的病,人们在网上留下这些痕迹之后,企业就可以利用其中的信息,以分析消费者的行为、做出更好的决策,而这甚至对消费者有利,他们可望靠着企业对自身行为模式的了解,得到更为量身定做的服务。一方面企业和个人都享受了“大数据”时代带来的便利,但另一方面无处不在的“第三只眼”却似乎在监控着每个人的行动,带来权利与自由遭到侵犯的隐忧。
当信息公开产生害处的时候,单个、分散的消费者基本不会有什么动力去维护这些隐私,因为其价值太细微了。据报道,在西方,消费者信息监控已经发展为一项规模达几十亿美元的产业,其中的企业基本不受什么监管,而即使是有影响力的人物的个人信息,其卖价通常都不会超过一美元。在这种力量不平衡之下,手中掌握着更强大的数据分析能力的大公司,以及更强大的政府,就拥有了自由利用这些信息而不受监督的能力。
与此同时,信息管理规范的演进却没有跟上数据科技发展的步伐,包括保护个人信息的法律、行业规则与商业界的道德规范。在“大数据”时代之前,民众可以以保密的方式来保护隐私,但今天人们在不知不觉间就透露了隐私。而这就要求那些保存和管理信息的企业承担更大的责任,这应该成为一种新的隐私保护模式:政府不应假定消费者在使用企业的通讯工具等产品的时候主动透露了自己的隐私,就意味着他们授权企业使用这些隐私。“大数据”呼唤“大安全”。力量越大责任也越大,现在是那些作为“大数据”时代弄潮儿的大企业和政府部门负起他们的责任,构建一张更完善的安全网的时候了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23