
大数据时代激活数据管理新思路_数据分析师培训
根据分析机构Gartner给出的定义,大数据就是那些具有规模大、速度快、种类多三大特征的信息资产。从海量数据中筛选出有用的信息,然后通过各种手段将信息转化为洞察力,从而做出正确决策,并最终推动业务发展。
通过一系列处理,大数据可以帮助企业制定明智且切实可行的战略,获取前所未有的客户洞察,支持客户购买行为,并构建新的业务模式,进而赢得竞争优势。然而,实践往往会比理论来得更困难。企业要处理好大数据生命周期的每一个环节,就必须采用创新且经济高效的处理方法,并跳出传统的数据管理思维。
什么在掣肘大数据为企业带来价值?
咨询巨头麦肯锡曾说,大数据正在成为下一代企业竞争力,生产力以及创新的前沿,它必将为企业发展带来巨大的价值。但在现实中,许多企业管理者盲目收集数据并进行分析,期待能够得到快速的回报。很遗憾,他们未能如愿。无论整体规划、技术平台还是业务流程,大多数企业并未针对大数据分析做出特别的调整与变化。而传统数据管理体系正在阻碍企业从大数据中提取价值。
首先,企业管理者需要问清自己这样一个问题:“大数据如何帮助我的企业实现发展?”。如果不能指导行动,那么收集再多的数据也是毫无意义的。事实上,获得洞察力是一方面,可实践性也是分析的标志之一。即企业能否从大量历史数据的“噪音”中获得可实践的预测以及具有前瞻性的决策?
其次,企业需要针对大数据分析来改变传统的业务流程与决策流程。按照传统企业经营方式,高层的主观意见会对决策造成决定性影响,这种现象到现在也还是非常普遍。让真实的数据来说话,这是许多企业管理者需要进行的观念转变。当然,收集更多的数据并不意味着就能够将数据转化为洞察,如果没有一个更适应大数据时代的技术架构,它也会让企业的转型变得难上加难。
第三,技术平台不是万能的,但没有技术平台是万万不能的。在很多情况下,我们会看到各种观点在弱化技术所起到的作用。事实上,这样的观点是比较片面的。要真正驾驭大数据,我们仍然需要一个过硬的技术平台来作为支撑。你很难想象用现有的SQL数据库来分析海量非结构化信息,大数据需要我们有一个更全面、更高效的平台来进行组织、处理和分析数据。同时需要考虑如何将大数据平台,与原有的数据架构进行最佳集成。
大数据时代的新思路:如何实现数据管理闭环
为实现上述目标,SAP总结了一套方法论,能够帮助企业思考以下几个问题,并加大数据转化为实在的收益:
1.我是否拥有目前所需的数据?
2.我能否获取这些数据?
3.获取数据后,我如何挖掘这些数据的价值?
4.业务环境发生变化时,我如何处理这些数据?
企业在进行数据管理方式转型的时候,需要从四个方面来把握并覆盖数据的全生命周期,即设想、创建、部署和扩展,并以此形成一个有机的闭环。根据这一方法论,SAP推出了有针对性的大数据服务,帮助企业从数据中获取全新洞察,进一步扩展业务功能,获得更多业务机会。
在设想阶段,企业需要制定一套大数据战略、路线图和计划。设想业务的发展方向并确定大数据将如何帮助企业以业务目标为切入点。在这一阶段中,SAP的数据科学家将帮助企业挖掘大数据的潜在应用场景,构建业务案例并确定大数据将为你的企业带来哪些价值。
制定好路线图和战略后,你可以利用SAP大数据服务创建一个支持大数据的最佳架构,从而实现目标。这一过程包括:安全集成新兴技术与现有投资;设计一个全面的基础架构,以从多个数据源(通常是现有数据集)获取数据;实施最佳大数据平台;以及将大数据的影响纳入治理政策范围内。
在部署阶段,也将是企业从大数据中获得回报的阶段。通过大数据平台,SAP大数据分析服务和应用实施服务能够支持企业运行分析应用,让企业进一步掌控全局,分析当前信息和历史信息。通过预测分析能力来提升业务成果;以绝佳的可视化效果传达和共享洞察;以及根据需求将信息交付给业务用户,并支持移动设备的信息共享。
最后,基于企业现有的大数据潜能,SAP大数据服务将让企业以一种最灵活、运营成本最低、且最能满足需求的方式部署解决方案,从而充分利用新环境,获取更丰厚的业务成果。通过内部部署、云模式或混合模式来部署解决方案。评估企业的现有功能,然后建立能力中心,推出企业所需的新技能,从而更有效地管理大数据并扩展大数据的影响力。
图一:如何开启你的大数据之旅(via SAP)
从评估大数据业务,到发现大数据价值、设计大数据架构,再到实施大数据平台、工具以及管理和优化大数据解决方案。SAP除了HANA这样的“全能型”内存数据平台之外,还能够为企业提供一个端到端的大数据服务组合。为企业进行大数据时代转型提供个性化的指导,从而充分利用不同流程的各种数据源,获取全新的、有意义的洞察。
总结
在充分认清大数据重要性的基础上,企业需要理解大数据之于业务的价值点,然后在规划的每一个阶段以及企业的每一个层级中充分利用数据,进一步扩展大数据的影响力从而形成良性循环。让更多的员工,更有规律地,更好地利用那些可管理的数据,然后让业务逐渐能够基于数据来采取行动。通过这样的管理新思路,才能够真正让大数据为我所用。文章来源:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28