
中国视角:大数据与商业地理分析_数据分析师
从全球范围来看,采用商业地理数据进行商业选址及消费者地理细分在发达经济体已经非常普及。为更精准地服务不断升级的中国消费者,宜家家居、麦当劳、星巴克等专门成立了商业地理分析团队,来指导其在中国的店铺选址。麦肯锡的“解读中国”商业地理分析团队亦感受到来自客户方越来越强烈的需求。我们以下图来说明架构在大数据之上的商业地理分析。
“80%的商业数据都是带有地理信息的”
“商业地理分析的目的就是把对的产品放在对的位置上”
“选址分析专家就是帮助客户找到最有利位置的‘风水’先生”
科学选出最优位置
我们服务过一家全国股份制商业银行,该银行希望规划未来在中国某一线城市的网点开设计划。这些网点须开设在(潜在)顾客集中的区域,方便个人及企业客户的业务办理,同时要避免选择过度竞争的区域,确保业务的健康增长。该如何科学地选出最优位置?
而这正是商业地理分析最擅长的领域。评估某一个特定地点是否具有商业价值,深入该地进行调查是传统的“笨”办法。若想从一百多个城市中选出每个城市的重点商圈,仅凭个人或者小团队的有限知识和商业直觉是远远不够的。我们认为,一个可行的方案是,利用这些城市的矢量地图并加载更细层面的经济、人口和地理数据,借助地理信息系统(GIS)来实现批量处理和定量分析。打个比方,风水先生一旦配备了现代化装备,就升级成为商业地理分析专家,他们凭借商业地理数据帮助客户寻找并确定城市中的最优位置。
为了帮助这家股份制银行挑选最有利位置,我们采取了抽丝剥茧层层深入的方法,从街道到商业楼宇,对可能的位置进行深入分析。综合该城市超过200个街道的人口统计信息、分区富裕程度、分区内各银行网点的分布及开业年限、各类商业信息点的分布等信息,将这些街道分区归纳为核心分区、次核心分区和避免分区三个大类。新设网点时优先考虑核心分区。接下来,深入到每一个街道分区内部,根据分区特征、商业信息点的分布与区域聚集度进行打分,结合该城市各分区内已建/在建/筹建楼宇列表选出网点的最优位置(见图1)。
沙盘上的商业地理
商业地理分析正如将军俯视沙盘,挖掘商业数据的地理纬度,将城市的战略高地和价值洼地一览无遗,运筹帷幄,决胜千里。
打开麦肯锡“解读中国”的22个城市集群,查访每一个城市,从市辖区到街道,从街道到居委会,乃至2km×2km的栅格,商业地理的分析工具使得“战略图景”的解析度和可视化程度大大提高。全新的高清影像不仅冲击着跨国公司、本地龙头企业,还有政策制定者。即使是城市轨道交通建设这样长期而浩大的工程,商业地理分析亦能提供独特的视角。
近期我们获邀为西南某省会城市的轨道交通发展把脉。从地理空间的角度来考察地铁规划再合适不过。该市地铁尚处于公共轨道交通建设初期,而未来10年间将从现在的2条线增加到10条线。
将该市的地铁规划、人口分布、商业网点分布及楼宇价格都放在GIS平台上,地铁的未来蓝图跃然纸上(见图2)。全面竣工后39%的城市人口将会在地铁站点周边800米内。但与伦敦和莫斯科等国际都市相比,地铁站点密度仍然偏低。同时,半数以上的医院和学校超出了地铁站点800米覆盖范围,站点附近尚缺乏足够的配套公共服务设施。进一步分析发现,还有部分地铁站点周围人口稀疏且商业活动不频繁,可能是城市中的价值洼地(见图3)。
处于地理信息产业链的顶端
地理信息产业在中国方兴未艾。近年来,提供地理信息系统、数据和服务的公司呈现出跨越式增长。从地图测绘和遥感影像获取,到地图加工并构建地理信息数据库,再到数据的批发与零售,一个完整的地理信息产业链已经形成。借助成熟的GIS软件,通过图形化的二次开发界面,商业地理分析员可以根据客户需求快速地进行定制分析。
最大的赢家将是站在产业链顶端的定制商业地理分析产品的提供者。商业地理分析产品将涵盖:选址分析、销售区域分配、配送路径优化、潜在消费者空间分布、城市规划等。其中,如前所示的选址分析应用最广最深,涉及经济环境分析、交通条件分析以及竞争/互补店分析,称其为商业地理的灵魂亦不为过。
几乎所有的行业都需要商业地理分析:银行、快消、电信、医药、航运、家具等等,即便是电子商务这样虚拟的行业,也需要商业地理的帮助,来判断消费者的地理分布以及不同地区消费者的特点,从而有的放矢地发布网络或者平面广告,抑或根据不同地区制定相应战略。物流公司更是离不开商业地理分析的统筹规划,通过与全面系统的商业地理信息数据库相结合,传统的运筹学焕发出新的活力。
以我们曾经服务过的某物流公司为例,该公司希望知道在上海布局多少个配送中心才能使配送成本最小。利用GIS软件中的Vehicle Route Problem模型可以很好地解决这个问题,我们测试从8个配送中心开始,把配送中心地理位置 、收寄件人的位置、配送员数量及载货量、配送员小时工资和油耗、交通情况等作为参数,求解得到总成本,再与其他数量的配送中心求解得到的总成本进行比较,得到一条配送中心数量与总成本的曲线,从而求得配送中心的最优数量和地理位置 (见图4)。
商业地理分析面对的客户往往是有着成千上万个网点的实体零售商或电商、数以千万计接货送货人的物流公司、网点遍布全国的大型银行。为这类大客户服务,决定了商业地理分析将处于地理信息产业链的顶端,并必然伴随着丰厚利润回报率。而中国目前专门从事商圈分析及商业选址分析的公司还只是少数,拥有大客户资源、掌握丰富数据且具备商业地理分析技术的公司将会成为新兴产业的领袖。
“数据难”制约中国商业地理分析
从商业地理的全球实践来看,发达经济体可以将地理信息成熟运用于商业的各个环节,在印度、印尼这样的新兴经济体中,地理信息技术也日益得到重视。
相比国外完善的商业地理数据服务,目前在中国,地理信息数据的可获取性、准确性和全面性仍然制约着中国地理信息产业的发展。能够提供商业价值较高的街道及以下层次(如街道、邮编区域、居委会乃至小区)边界的地图供应商极为稀少,与之相配套的数据,如人口、收入、消费、住房房价和商业楼盘的租金,也不易获取。在二线以下城市,边界地图数据可能要从各地测绘机构零散地加以收集,获取覆盖全国的数据非常困难。
过去几年,在麦肯锡全球商业地理分析团队的帮助和多方努力下,我们已经构建了深入到街道级别的地理信息数据库,涵盖近千万的商业信息点,并已经应用于数十个客户项目的分析中,在中国处于领先地位。目前,全国人口普查数据、房价数据都已经整合进入这一空间数据库,更细层次(如居委会等)的数据整合工作正在进行中。
正如大数据改变着世界一样,地理坐标将推动新一轮大数据的进化。前瞻未来,也许重要的变革机遇就蕴藏在商业地理分析中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03