京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:杨强,华人界首个国际先进人工智能协会(AAAI)院士;华为诺亚方舟实验室主任, 香港科技大学计算机系教授; ACM杰出科学家。下面是杨强对大数据行业三个热门问题的解答。

我第一次听到“大数据”这个词是2011年在新加坡举行的一次美国科学院大数据讨论会。因数据采集费用的急剧下降,导致大量数据的产生,这一现象首次成为关注焦点。当时对数据的急剧增长意味着什么没有统一看法, 唯一认可的就是把这一现象命名为“大数据”。
今天,各行各业对大数据的理解各不相同。电信行业对“大数据到底能做啥?”至今没有定论。我之前有关大数据的文章发表后,读者提出很多疑问,因篇幅有限,选择三个关注度较高的问题来解答,抛砖引玉,供大家进一步讨论。
业界给大数据的定义为4个“V”,即体量大(Volume),种类多(Variety),速度快(Velocity),以及真实性高(Veracity)。如果仅仅看这几个维度,那么大数据就是炒作。因为它并未说明大数据的本质。大数据本质是通过数据加计算机可以带来一种像人一样的思维能力。这种能力在商业上的体现即为一种新的更好的商业运作模式。
诺亚方舟实验室在华为终端“智汇云”的应用,就是一个典型的大数据应用案例。智汇云是华为终端的一个云端商场,有上千万的用户和几十万的应用(APP),每个用户的习惯、兴趣、选择和卸载的应用都不一样。这些行为的数据总和为每个用户形成了一个独特的APP推荐问题:当用户再一次来到智汇云的时候,如何精准地向用户推荐他最想要的那些应用,而不是简单地把最流行的应用推荐给用户?
这个商业模式可以被非常明确地表达:“如何通过华为手机APP市场的大数据分析提高用户接受APP推荐的精准度,以提升华为终端的用户体验?”
最后我们利用数以万计的用户特征的多种维度,建立了一个非常精细的用户模型。其推荐效果比以往的智汇云提升了70%以上。
大数据应用成功的关键也正是要看我们有没有一个明确的商业(或科学)目的。这个商业模式的定义是必须的。
管道大数据和互联网大数据,到底谁是主导?区别是什么?各自的价值在哪里?这对于运营商和设备提供商来说,可能是有关大数据最纠结的问题了。
互联网和运营商的关系,可以用车和路的关系来理解。路上行驶的车辆可以看作是互联网,车上所装的货物和乘客及运输系统可以看作是互联网的数据和各种应用,而车辆所走的高速公路就类似于运营商提供的管道。对于互联网来说,它们更关心乘客和货物,及把人和货运到目的地。但从运营商的角度来说,它们更关心的是道路是否通畅。从这一点来说,互联网的数据是有关人和货物,而运营商的数据是车流量和道路拥塞程度。所以,互联网的数据是终端用户的数据,而运营商的数据是关于数据的数据。
关于数据的数据在电信行业意义重大。当然这有个前提:资源无论到何时都是有限的。
还拿车和路来比喻。如何为一些重要的常客开辟一条快速通道?你需要先知道哪些是重要的常客。哪些重要车辆公司在受对手高速路公司吸引,正在考虑换路?你需要分析这些公司的痛点在哪里。哪些地区需要新建高速路?你需要对各地位置及车流情况做分析(开拓运营商新业务)。哪些地区可以直接建高铁?你需要了解地区发展状况及所处阶段(对于成熟的运营商可以直接上5G)。
对数据分析的需求也随着运营技术的前进而提升。在5G场景下,我们需要给大众提供更密集、更快、更个性化的电信服务。那么,我们就要知道用户的使用规律、痛点、服务软肋在哪里。一个对你如影随行的高端服务并不是无数的服务员在所有你可能出现的地方等待,而是由一个聪明的服务员在你需要的时候及时出现。
未来的网络技术,如软件定义网络(SDN), 更需要大数据的支持:SDN的大脑,可以对网络大数据的深度挖掘所产生、修改、对未来端到端的通讯需求有精准的预测,不断从数据中学习。这样,整个网络就像我们人脑一样,变得越来越聪明。
大数据带来的变革只不过是计算机技术变革的其中一步。其变革过程和人类历史上其他重要变革一样,都要经过从资源(即:大数据)的原始积累,到商业和社会服务的差异化,再到人类对虚拟世界的行业和社会的再规范以解决公平合理的数据资源分配。当大数据及其技术的原始积累得到稳定以后,人们对之后的数字化应用将步入稳定状态。
以此推论,由大数据引发的下一代技术很可能是更大规模的、面向数字化行业的转变,这会让众多传统行业向数字世界全面或部分转化和融合。这个转变使得许多需要众多专家的领域将以另一种形式出现,也使得许多行业在整体“食物链条”的上下游有所改变。 比如,医生和科学家这样“高大上”的行业, 到那时会不会变成只负责数据采集和解释分析结果的 “工人”?或是成为在大数据驱动下智能机器人的伙伴?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09