京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为何要从数据管理,进化到大数据治理_数据分析师
最近参加了“中国优秀首席信息官(CIO)评选”的颁奖大会,现场很多人都在谈大数据,其中有传统行业、有银行、也有医院。我注意到大部分演讲嘉宾均集中讨论如何应用大数据,或是如何用数据进行创新。
但跟以往的很多会议一样,我很少听到数据作为原材料应该怎么管理。
你可能会说,银行业、通讯业等不是早就在做数据管理了吗?
的确,数据管理(data management)并非新鲜,20年前就有人在做了。但在数据呈指数级增长之下,我们现在讲的数据已跟以往不一样。不仅是数据的大小,而且包括数据的内容、来源、结构等都很不一样。
以往我们可能根本不敢想象,Facebook的日均新增数据量已达到600T。与此同时,无数以往不可能出现的算法和应用也随之呈爆炸式增长。
数据在创新;算法在创新;应用也在创新。我们不禁会问,以往的数据管理思路,能适应新形势的要求吗?
自上而下管理费时失事
在一些传统银行,若你需要看某个数据,就必须拿着申请单找一堆人签字,最后,从一个类似医院取药的视窗中,将按照流程签满字的纸递给数据管理员。
而这个管理员会告诉你,你要等几个小时才可拿到数据。
因他要从一大堆备份中,找出你要的数据,加载完后才能给你。这就是传统的数据管理方式:严格按照自上而下的流程进行,甚至要做到滴水不漏。
后来,这个银行发生了一个对他们来说具有时代意义的改变——那个帮你找数据的管理员,变成了机器人。虽然机器人的效率大大提升了,但数据管理的本质却没有变化。
在大数据时代,数据将会促成新技术的发展,以及更多新数据的产生。
开放的网络环境、频繁的数据更新、丰富的数据种类,加上数据保护的需求激增、数据生态圈的物种增多、流动性加快……这些复杂多变又未知的环境,对于中央式管理是极大的挑战。
试想,若还是按照以往的方式,会出现怎样的情形?
也许,数据的审批人会比数据的使用者还多;也许,数据的创新会停滞不前;也许,数据的应用价值会比现在晚几年才被发现……
数据治理须人人参与
因此,我们必须意识到,数据治理不等同于数据管理,绝非依靠自上而下的贯彻执行便可解决。
相反,数据治理需要每个人的参与和协同,要求每个人都有意识去治理好数据。而且数据治理本身也可以变成应用和创新,成为更多应用和创新的“水、电、煤”。
在数据产生价值之前,不管看数据还是直接应用数据,首先都要注意:数据有没有?数据准不准?粒度细不细?是否稳定的?
若行政总裁每天看的数据都是错误的,或者不是稳定产出的,那么企业依赖数据的决策将付出极高代价。
所以企业若不做数据治理,或者还是按照以往的思维来管理数据,那么,日后对数据的依赖愈深,便可能愈快出问题。
数据治理的新思路,不仅是指组织结构上要从由上而下变成全体协同,而且要在技术上创新,提供更智能的治理工具,帮助大家提高数据质量、保护数据安全及有效控制数据成本。
最后我想说,大数据时代的数据治理,一定是将有形的管理策略化成无形的智能产品,从一纸命令变成根植在每个人脑中的信念和下意识的习惯。我们要用大数据的思维方式,用数据来治理数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20