京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“天下大同”才是大数据的理想归宿_数据分析师
“大同”原本是中国古代的思想,指人类最终可以达到的理想世界,代表着人类对未来社会的美好憧憬。现代又加入了全球范围内的政治、经济、科技、文化融合的思想。而今正流行的“大数据”,其理想模式也是“天下大同”,最终才能更好的发挥大数据的效能,并最终实现大数据的共治共享。
然而现实世界中,要实现大数据的共治共享似乎有点“天方夜谭”,最典型的例子就是巨头们都在叫嚣着大数据,但往往又出于商业利益的考量,谁都希望守住自家的一亩三分地,不愿意将自家的数据积累共享,甚至连平台接口协议共享实现都不易。
我们都知道Fitbit之前就曾表态过,其产品不会支持苹果的Apple Store平台,数据也不能实现共享,自然和Apple Health就无法同步。结果可想而知,强势的一方苹果公司要求Fitbit公司的应用全部从Apple Store下架,而这仅仅只是APP应用平台和APP应用之间的故事。
在另一个流行的领域“车联网”中,数据的共享同样是难中之难,而且目前也因此而导致目前车联网发展举步维艰。作为汽车的主导者,汽车公司基于安全以及自身商业利益的考量,自然也不愿意将车联网的核心数据共享出去,顶多友情开放一些无关紧要的数据。而车联网产业链条的各方仅能得到有限的数据,弃之可惜,但是即便都收集起来也没多大的实际意义。最终可悲的是,汽车企业尽管也在美其名曰的主导和推行自家品牌的车联网,但车联网始终放在自家品牌之后,都是站在为汽车品牌服务的角度,重点在于售车,其主导的车联网也是自家品牌的联网,和其他品牌的汽车无关,甚至和车联网链条的其他企业亦无关。但车联网的最终实现又必须是人、车、路多方的数据共享和协同,车企自身的车联网充其量也就是一个“过家家”的游戏罢了。
除了APP应用平台和APP之间的故事,车联网产业链关于数据的故事,时下iOS和Android两大系统的大战和数据兼容也是一大难题。对于APP开发者来说,同样的应用必须开发适配iOS和Android两个系统的不同版本。不过更为头疼的是两大系统之间的数据同步和共享问题,因为两方企业基于商业利益的竞争,谁都不愿意妥协和让步,也都不愿意放开自己的用户和数据。
然而尽管企业有企业的商业利益考量,企业有企业的自建屏障进行保护,但数据的共享和协同终究是大趋势。
关于Fitbit数据和Apple Health同步问题有了更好的解决方式。Fitbit数据可以通过第三方数据和Apple Health实现同步,此举自然是可喜的一大步,总有一种力量在推动着大数据的共享。
而关于车联网间的数据共享问题,目前也有着介于“法律边界红线边缘”的处理方式,即有第三方公司通过破解can协议和网关的方式取得汽车数据,并最终“分享”给车联网的产业链。尽管手段有待商榷,但确确实实在助推汽车公司走向更加开放。
iOS和Android数据共享和数据整合则应该交给新的创业型公司,总会有惊喜。iOS和Android的数据共享也是一大刚需和大市场,有理由值得期待。
然而,事情的发展总会损伤到既得利益者的固有利益和脆弱心里,既得利益者必然会防抗。但不管怎么样,笔者不太希望现实世界里,平台太多,“数据”不够用的“杯具”继续。过多相互有意隔绝的平台,势必会造成未来大量的产生的数据,却又人为地产生大量不兼容、不互通、不可二次利用的问题。每个投身期间的大小企业,都惦记着用自己的产品和数据格式和协议,形成竞争壁垒,然后党同伐异都算奢望,每家企业都想着凭借数据制霸天下。
如此,最终大数据终将成为空中楼阁,很难造福人类。前文说到的车联网也就只能成为各家车企内部的局域网,离人、车、路的协同越来越遥远。
有需求的地方,自然就会有商机,自然也会产生新的创业公司和创业智慧。第三方的同步和兼容工具,就极有可能成为一个衍生应用市场。尽管各路衍生应用市场和原有平台诸侯也一定会在捍卫自己的“江山”的过程中打个你死我活。但最终,肯定会有非常少量的平台最终成为数据协同和整合共享标准,推动大数据的“大同”。
当车联网、跨系统平台不再是梦,而是现实的时候,大数据的“天下大同”就开始迈出了实质性的步伐。革命尚未成功,第三方应用,第三方数据协同平台们仍需努力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20