京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据对汽车业意味着什么_数据分析师培训
近几年,大数据这个词渗透到了各行各业各领域,汽车产业也概莫例外。从IT的角度给汽车产业大数据进行定义,它是基于从物联网、云计算形成的“汽车产业链数据+人的大行为数据+所有数据”交互融合的数据,最终形成汽车产业大数据生态。那么,大数据究竟对汽车业意味着什么?
几乎所有路上跑着的汽车都在时刻生产惊人的海量数据,你能想象得到吗?一辆无人驾驶汽车每秒产生约1G的数据,相当于每秒发送20万封纯文本电子邮件或用电脑上传100张高清数码相片。倘若能有效收集并利用每辆汽车卸载下的数据,一定十分有助于整个汽车行业调整未来的发展方向,并让汽车产业往更高层次发展,让汽车产品变得更加环保、智能、个性化、精准;带来更极致的用户体验,让你的汽车更懂你,实现更加便捷的出行。
中国已经连续多年成为全球最大的汽车产销国。每天,在路上行驶着数以万计的车辆。如果把每辆汽车的行为数字化,那么每月甚至每周每辆车将生产海量的数据。如果我们把它充分整合并利用起来,就可以从中发现一个崭新的天地,将会在各个方面产生巨大的价值。
日本有一个实例,通过在汽车座椅下面安装360个压力传感器,从0~256数值范围进行量化,用来测量人对椅子施加压力的方式。这样,人体施压特征的数据转换为有用信息,能够辨别乘坐者的身份,并可以作为汽车防盗系统安装在汽车上,也可以在司机疲劳驾驶时发出警告或自动刹车。当然,更长远的想法是智慧城市理念的实现——交通信号灯,一套计算中心即可操作整个城市中交通工具的速度、方向。而车载系统也不仅仅满足于汽车中控、扩大iOS市场占有率的层面,而是背后的大数据。通过抓取能耗、车辆损耗、行车轨迹等数据,卸载到云端,将来凭此就可以把能源、交通、地图等相关产业链一并打通。总而言之,汽车产业大数据的应用,可以帮助企业洞察需求、预测趋势、精准营销、个性化定制、帮助企业优化运营和管理等,最终促进汽车产业发展。从某种意义上看,大数据对汽车业极具挑战与颠覆性。
然而,目前,汽车产业大数据仍处在一个处女待开发阶段。可以看到很多数据没有公开,如政府上牌数据、汽车主机厂数据、4s店维修保养记录等,如果这些数据都能运用起来可以有很大的价值。比如,很多汽车主机厂做CRM(客户关系管理)系统,尽管有大量车主数据,但这些数据并没有被激活,在车辆维修保养以后,数据链条就断了,难以做到精准的营销和服务,客户难以得到更优质的体验。
针对汽车产业大数据应用的趋势,可以从四个层面进行探索。一是在战略层面,大数据可以帮助进行更及时的汽车产业研究。通过大数据的实时采集和分析,可以更加快速准确地掌握汽车产业动态,对市场作出预测和投资,制定发展战略。二是在产品层面,通过爬虫技术在互联网扒数据,每天都有上千万条数据,这些数据中有用户对汽车产品不同的评价,展示了一些潜在的需求及趋势,把这些需求挖掘出来,可以更好地帮助企业改进和优化产品设计。三是在制造层面,生产可以反过来做,未来的汽车通过c2b模式定制,也可以优化产品制造、设计的流程。四是在销售层面,由大数据支持的精准营销与决策凸显优势,一方面在于“大”,另一方面在于“快”。实施的大数据分析,借助数据库的分析,实施有效的推广策略,实现精准销售,从而大大降低营销费用的浪费,还可以根据消费者特点为他们制定计划,能与消费者互动,提供有用的消费信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01