
促进征信业在大数据背景下的跨越式发展应建立符合大数据的征信法律制度和业务规则体系;加强征信产品创新;提高大数据技术处理能力;健全大数据信息共享机制;提升征信监督管理水平;建立符合大数据的信息安全保护机制。
近年来,随着互联网技术的发展,大数据越来越受到关注,其应用逐步渗透至多个行业,开启了全新的数据时代。数据是征信业务开展的基础资料,征信活动 主要是围绕数据进行采集、整理、保存、加工,并最终向信息使用者提供。大数据不仅为征信业发展提供了极为丰富的数据信息资源,也改变了征信产品设计和生产 理念,成为了未来征信业发展最重要的基石。我国征信业发展尚处于起步阶段,在大数据时代存在征信法律制度和业务规则不够完善、征信机构数据处理能力有待提 高等问题。未来征信业面临的机遇和挑战并存,研究大数据时代征信业的发展具有重要意义。
目前,对大数据无公认的定义,一般认为大数据是指所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为服务于经营决策的资讯。大数据的出现,使征信业发展面临的外部环境发生了巨大的变化。
1.优化征信市场的格局。随着征信机构市场化运营机制的确立,将会有更多信息资源优势的企业借助互联网、大数据 等信息技术的创新进步,从征信业薄弱环节切入,通过服务创新或产品创新打破原有的征信市场格局。一是电商企业将组建征信机构。以阿里巴巴为例,其利用淘 宝、天猫、支付宝平台上的行为数据和信用情况,建立成了涵盖数十万企业的数据库,具备了开展网络征信服务的基础和实力。二是金融机构建立征信机构。例如平 安集团拟整合网贷信息、银行信贷信息、车辆违章信息等,建立金融数据挖掘中介机构。三是新型征信机构应运而生。一些大数据公司依靠技术手段,以电子商务、 社交网络为平台,采集信息,提供信用信息服务,可能成为新型的征信机构。
2.推动征信业的转型升级。大数据给征信业带来转型升级的历史机遇,未来的征信业将以智能数据分析系统为平台, 利用大数据挖掘技术,支持征信业发展创新。大数据支持征信业升级和转型主要体现在二个方面。一方面大数据促成征信业建立全新的风险控制体制,向有效监管转 型。大数据技术对客户信用信息进行深度挖掘,实时监控,防范潜在的信用风险。另一方面大数据支持征信机构向精细化管理转变。大数据的核心优势在于信息挖 掘,精细化管理的首要条件是充分信息化,包括业务信息化和管理信息化。
3.促进征信业差异化竞争。征信机构通过采用不同的数据来源,不同的数据处理方式,针对不同的客户,开发出不同 的产品,满足不同层次客户的市场需求,实现差异化竞争。例如,金融机构对征信服务的需求将从单个借款主体的信用报告,扩展到运用信用信息拓展网络影响和金 融服务渠道。P2P网络借贷、电商金融等业态需要借助信用信息共享防范风险,降低交易成本。
4.拓展征信数据来源。大数据使征信数据来源呈现多元化、多层化和非结构化的特点,更加全面和真实地反映信息主 体的信用情况。征信机构从在政府部门、金融机构等实体机构中采集信息,转向从互联网等虚拟世界中获取信息。在数据采集的广度和深度上,征信数据量将激增, 采集包括证券数据、保险数据、商业信用数据、消费交易数据和公共事业缴费数据等,全面地覆盖与信息主体相关的各项因素。
1.现有征信业务规则与大数据时代不匹配。我国有关征信业的法律法规的规制对象主要是传统金融领域,《征信业管 理条例》及其配套制度初步构建了我国征信业的法律法规框架,但是《征信业管理条例》是否满足大数据时代征信业务的规则要求,尚未得到市场验证。目前,缺少 对大数据时代征信活动的规范,如有关大数据采集、整理、保存、加工和处理的制度要求。因此,还需要进一步细化和完善征信业务规则,以更好促进大数据时代征 信市场的发展。
2.征信业监管技术和水平需改进。大数据时代给征信业发展带来深刻影响,同时也对征信业监管提出了更高的要求。 要适应大数据时代的征信监管需求,征信监管水平要能跟上大数据征信的发展水平,监管政策要符合大数据的基本规律,监管人员要具有适应大数据的知识和能力。 在行业自律监管方面,我国行业监管尚未发育成熟,行业标准尚未统一,行业规范以及行业职业道德等内容尚未完善。
3.信息安全和隐私保护形势严峻。随着数据的进一步集中和数据量的急剧增长,对海量数据进行安全防护变得更加困难,数据的分布式处理也加大了数据泄露的风险,隐私保护和数据安全成为制约大数据发展的瓶颈。大数据时代下的征信业同时具有了大数据和征信两个特性,对隐私保护和数据安全的要求更高。
4.数据处理能力亟待提高。如何有效处理大数据,是大数据发挥作用的重要环节。益百利等大型征信机构在数据处理 方面已经采取多层次数据挖掘等先进技术,利用私有云平台,对系统中海量数据进行处理和研发,减少主观判断,提高风险预测的准确性。但是目前我国征信机构发 展起步较晚,缺少对数据处理的核心技术,导致数据分析结果不能够准确的识别个体或组织的行为。
5.硬件基础设施需要全面升级。过去征信机构存储征信数据主要是在本地建立数据库,大数据时代随着数据量呈几何级数的增加,征信机构硬件技术的发展已经跟不上数据容量的增长速度,数据存储面临较大压力。
随着大数据时代的到来,未来征信业发展要从制度设计、技术进步、信息共享、监督管理、隐私保护等方面不断创新,促进征信业在大数据背景下的跨越式发展。
(一)建立符合大数据的征信法律制度和业务规则体系。
现有的征信法律体系都是基于传统数据模式下制定的,难以满 足大数据等新技术条件下征信业发展的制度需求。在征信业务开展过程中,大数据的收集使用可能涉及国家信息安全、企业商业秘密、公民隐私等,为了给大数据条 件下征信业发展提供制度保障,需要从征信立法层面完善信息安全和数据管理的法律制度,明确大数据背景下数据采集、整理、加工、分析、使用的规则,确保大数 据时代征信业发展有法可依。
(二)加强征信产品创新。
随着可获得的数据量呈几何倍数的增加,征信机构通过深度挖掘和使用这些数据,就可以极 大地拓展征信产品的种类,不仅能够提供信用报告查询等基础服务和产品,还可以提供其他综合性产品,满足社会各界的需求。从征信产品的满足层次高低的不同, 可以分为宏观、中观和微观的征信产品。宏观层面,征信机构通过大数据分析可以对系统性、全局性的风险信息进行预测。中观层面,征信机构的海量数据包含大量 时效性和政策含义都很强的信息,可以灵活多样地进行多维度组合分析。把这些信息整理和挖掘出来,建立对应的指数体系,有助于行业监管。微观层面,在信用主 体(包括企业和个人)同意的前提下,征信机构可以提供每一个信用主体的信用报告、信用评分、身份验证、欺诈检测、风险预警、关联分析等多种数据服务。
(三)提高大数据技术处理能力。
大数据价值的完整体现需要多种技术的协同。数据抽取与集成、数据分析以及数据解 释,是大数据时代征信数据处理的三个重要环节,在数据处理过程中搜索引擎、云计算、数据挖掘等新技术使用必不可少。因此,征信机构要加大数据处理分析专业 人才队伍的培养,同时要引进大数据处理的专业方法和工具,建立前瞻性的征信业务分析模型,更好的把握、预测市场和信息主体的行为。
(四)健全大数据信息共享机制。
完善的大数据标准体系是推进数据共建共享的前提。目前,我国来自各行业、各渠道的数据标准存在差异,成为阻碍数据开放和共享的关键瓶颈。建议尽快统一标准和格式,以便进行规范化的数据融合,提升大数据的整合能力,打破资源部门间的信息孤岛,从而完善信息共享机制。
(五)提升征信监督管理水平。
对于大数据时代的征信业,在注重市场培育的同时,要加强对行业的监督管理,防范信 用风险。监管部门自身也要不断学习,一方面制定符合大数据的征信业务规则,推动征信业尽快适应大数据时代的发展要求;另一方面要制定并实施符合大数据时代 征信业的监管措施,建立跨部门合作监管机制,引导和推动行业自律,以行业自律促进大数据时代下征信业的有序发展。
(六)建立符合大数据的信息安全保护机制。
在制度设计上,要规定信息主体、信息提供者、征信机构、信息使用者的权利、义务、责任,明确隐私信息的范围,确保信息主体的信息依法使用。在技术上,要研究并采用最先进的网络信息安全技术,从信息的存储、传递、使用、销毁等全流程进行信息保护,防止信息外泄。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28