
大家都说自己在做大数据营销。
基于:
上面3个因素,国内能做大数据市场营销的还真只有BAT三家。国外的不熟悉,这里不谈。
众所周知,三家的数据特点各不相同。腾讯优势在社交数据;阿里巴巴优势在商品和交易数据;百度优势在全网信息、消费者行为和主动需求数据。
当然例如平安、宝洁、沃尔玛这样的大企业,其自身肯定积累了大量的数据,基于这些数据的数据挖掘、过去就一直在做的网站分析等业务,虽然现今都冠以 “大数据”的名义,但这与我们讨论的大数据还不尽相同,他们用传统数据工具对抽取一定数据进行分析,能基于那些数据进行挖掘,只是数量增多了而已,总体而 言仍然属于传统的小数据范畴
营销业务类型
如果粗略划分的话,广告主市场营销的预算一般可以分为实效营销和品牌营销两大块,根据自身发展需要和行业业务特点各有侧重。例如过去京东、一号店等 电商类企业,平安等金融类企业主要做效果营销,互联网是更适合做效果的媒体投放渠道;宝洁等FMCG客户、奔驰奥迪等汽车客户主要做品牌营销,传统电视渠 道是主要的媒体投放渠道。当然现在情况也逐渐改变,主要反映在:
2.1.实效营销
实效营销,互联网人太清楚了。由于业务特性,过去的百度和阿里巴巴大数据主要应用还是中小客户和消费者的个性化广告,腾讯也主要是面向消费者的个性化广告(阿里还可以用支付数据作信用风险评估,但是金融方面的了)。
例如像大家相对熟悉用大数据训练优化数据挖掘模型,Amazon等一众零售电商普遍应用这种个性化推荐技术,在我看来只是市场营销中的应用类型之 一。包括BAT及各大电商在内的各种个性化搜索和展示广告都是这个路子。基本上都是实效营销,考核CPC。在很多互联网人眼里,由于熟悉实效营销,会有一 种认知,市场营销就是这些东西。挂广告,考核CPM/CPC/CPD/CPS。
2.2品牌营销
据我观察,不少互联网人其实对于品牌营销是比较陌生的。关于品牌营销
这里需要先说为什么做品牌营销?
理由1.赚钱的需要:实效(效果)营销钱赚到天花板了,互联网媒体要抢品牌营销大头的预算了。
整个广告市场,大广告主手上的预算,占大头的还是品牌营销预算,投放的媒介上传统媒体(例如电视等)居多,投给数字媒体上的钱只是10%~30%(大概数字)左右。
理由2.客户的需要:别再跟我提CPC了,很多东西没法通过点击衡量,品牌的知名度、美誉度、忠诚度怎么用CPC衡量?因此需要对大客户提供整合营销的解决方案。
百度过去是效果营销的典型代表。
有一种认知,百度在网民眼里是个搜索工具,赚钱靠SEM,靠竞价排名,赚不良广告主的钱。我觉得这也是 @Fenng 提到的智力上偷懒的表现。
百度除了广泛的中小企业客户,还有大量的大品牌客户,例如宝洁、奔驰、宝马、平安、欧莱雅等等,收入比重很大。对这些大客户,需要品牌营销。
这样百度大数据的价值就体现出来了。前边说到百度数据的优势在于全网信息和消费者真实行为和需求的表达。覆盖的广度不是商品交易数据能比的。因此对为品牌提供整合营销解决方案奠定了基础。
基于以上,对百度最有价值的方式是基于大数据提供品牌营销解决方案。
基于数据的营销基本过程
大数据的基本营销过程与过去数据分析基本过程没有差别,需要在定义商业问题之后,采集和处理数据、建模分析数据、解读数据这么三个大层面。但是大数据对三个层面的影响使得具体的做法又与传统不一样。
3.1 数据层:采集和处理数据
传统采集数据的过程一般是有限的、有意识的、结构化的进行数据采集,例如问卷调研的形式。你能采集到的数据一定是你能设想到的情况。数据的结构化较好。一般的数据库Mysql甚至Excel就能满足数据处理过程。
而互联网时代里,大数据的采集过程基本是无限的、无意识的、非结构化的数据采集。各种纷繁复杂的行为数据以行为日志的形式上传到服务器。专属的例如Hadoop、Mapreduce等工具就不赘述。
3.2 业务层:建模分析数据
使用的数据分析模型,例如基本统计、机器学习、例如数据挖掘的分类、聚类、关联、预测等算法,传统数据和大数据的做法差别不大,例如银行、通信运营 商、零售商早已成熟运用消费者的属性和行为数据来识别风险和付费可能性。但是由于数据量的极大扩增,算法也获得极大优化提升的空间。
3.3 应用层:解读数据
数据指导营销最重要的是解读。
传统一般是定义营销问题之后,采集对应的数据,然后根据确定的建模或分析框架,数据进行分析,验证假设,进行解读。解读的空间是有限的。
而大数据提供了一种可能性,既可以根据营销问题,封闭性地去挖掘对应数据进行验证,也可以开放性地探索,得出一些可能与常识或经验判断完全相异的结论出来。可解读的点变得非常丰富。
大数据探索品牌营销目前做得怎么样?
阿里巴巴怎么做我不清楚,感觉阿里的大数据还主要在实效营销的方面发力。通过“西湖品学·大数据峰会”的报道上看来的。
有的的部门便是基于客户的真实商业需求和问题,通过大数据的应用提供解决方案,目前也已经和客户产生了不少优秀的模型方法和案例成果。
与传统品牌营销的几方面类似,大数据在品牌营销的主要应用方向也有:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28