京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Spark成为大数据分析领域新核心的五个理由
在过去几年当中,随着Hadoop逐步成为大数据处理领域的主导性解决思路,原本存在的诸多争议也开始尘埃落定。首先,Hadoop分布式文件系统是处理大数据的正确存储平台。其次,YARN是大数据环境下理想的资源分配与管理框架选项。第三也是最重要的一点,没有哪套单一处理框架能够解决所有问题。虽然MapReduce确实是一项了不起的技术成果,但仍然不足以成为百试百灵的特效药。
依赖于Hadoop的企业需要借助一系列分析型基础设施与流程以找到与各类关键性问题相关的结论与解答。企业客户需要数据准备、描述性分析、搜索、预测性分析以及机器学习与图形处理等更为先进的功能。与此同时,企业还需要一套能够满足其实际需求的工具集,允许他们充分运用目前已经具备的各类技能及其它资源。就目前而言,并没有哪种标准化单一处理框架足以提供这样的效果。从这个角度出发,Spark的优势恰好得到了完美体现。
尽管Spark还仅仅是个相对年轻的数据项目,但其能够满足前面提到的全部需求,甚至可以做得更多。在今天的文章中,我们将列举五大理由,证明为什么由Spark领衔的时代已经来临。
1. Spark让高级分析由理想变为现实
尽管多数大型创新型企业正在努力拓展其高级分析能力,但在最近于纽约召开的一次大数据分析会议上,只有20%的与会者表示目前正在企业内部部署高级分析解决方案。另外80%与会者反映其仍然只具备简单的数据准备与基本分析能力。在这些企业中,只有极少数数据科学家开始将大量时间用于实现并管理描述性分析机制。
Spark项目提供的框架能够让高级分析的开箱即用目标成为现实。这套框架当中包含众多工具,例如查询加速、机器学习库、图形处理引擎以及流分析引擎等等。对于企业而言,即使拥有极为杰出的数据科学家人才(当然这一前提同样很难实现),他们也几乎不可能通过MapReduce实现上述分析目标。除此之外,Spark还提供易于使用且速度惊人的预置库。在此基础之上,数据科学家们将被解放出来,从而将主要精力集中在数据准备及质量控制之外的、更为关键的事务身上。有了Spark的协助,他们甚至能够确保对分析结果做出正确的解释。
2. Spark让一切更为简便
长久以来,Hadoop面临的最大难题就是使用难度过高,企业甚至很难找到有能力打理Hadoop的人才。虽然随着新版本的不断出炉,如今Hadoop在便捷性与功能水平方面已经得到了长足进步,但针对难度的诟病之声依然不绝于耳。相较于强制要求用户了解一系列高复杂性知识背景,例如Java与MapReduce编程模式,Spark项目则在设计思路上保证了每一位了解数据库及一定程度脚本技能(使用Python或者Scala语言)的用户都能够轻松上手。在这种情况下,企业能够更顺畅地找到有能力理解其数据以及相关处理工具的招聘对象。此外,供应商还能够快速为其开发出分析解决方案,并在短时间内将创新型成果交付至客户手中。
3. Spark提供多种语言选项
在讨论这一话题时,我们不禁要问:如果SQL事实上并不存在,那么我们是否会为了应对大数据分析挑战而发明SQL这样一种语言?答案恐怕是否定的——至少不会仅仅只发明SQL。我们当然希望能够根据具体问题的不同而拥有更多更为灵活的选项,通过多种角度实现数据整理与检索,并以更为高效的方式将数据移动到分析框架当中。Spark就抛开了一切以SQL为中心的僵化思路,将通往数据宝库的大门向最快、最精致的分析手段敞开,这种不畏数据与业务挑战的解决思路确实值得赞赏。
4. Spark加快结果整理速度
随着业务发展步伐的不断加快,企业对于实时分析结果的需要也变得愈发迫切。Spark项目提供的并发内存内处理机制能够带来数倍于其它采用磁盘访问方式的解决方案的结果交付速度。传统方案带来的高延迟水平会严重拖慢增量分析及业务流程的处理速度,并使以此为基础的运营活动难于开展。随着更多供应商开始利用Spark构建应用程序,分析任务流程的执行效率将得到极大提高。分析结果的快速交付意味着分析人士能够反复验证自己的论断,给出更为精确且完整的答案。总而言之,Spark项目让分析师们将精力集中在核心工作上:更快更好地为难题找出解答。
5. Spark对于Hadoop供应商选择不设硬性要求
目前各大Hadoop发行版本都能够支持Spark,其理由也非常充分。Spark是一套中立性解决方案,即不会将用户绑定到任何一家供应商身上。由于Spark属于开源项目,因此企业客户能够分析地构建Spark分析基础设施而不必担心其是否会受到某些Hadoop供应商在特定发展思路方面的挟持。如果客户决定转移平台,其分析数据也能够顺利实现迁移。
Spark项目蕴含着巨大的能量,而且已经在短时间内经受住了考验、证明其有能力密切匹配大数据分析业务的实际要求。目前我们所迎来的还仅仅是“Spark时代”的开端。随着企业越来越多地发挥Spark项目中的潜能,我们将逐步见证Spark在任意大数据分析环境下巩固其核心技术地位,围绕其建立起的生态系统也将继续茁壮成长。如果企业客户希望认真考量高级实时分析技术的可行性,那么将Spark引入自身大数据集几乎已经成为一种必然。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16