京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师-数据分析师为何有专业要求
数据分析师对专业要求一般为:统计学,经济学,计量经济学,人口学,社会学,心理学,市场营销,企业管理。
在这些专业中,最主要的是有一个共性——统计。因此,对于统计概率掌握得比较好的都可以从事数据分析的工作。由于国内数据分析行业发展还不够成熟,统计学出身的学生其实真正工作中做数据分析的非常少,因为企业的需求是最近几年才上升的,所以对于很多非统计专业的人来说,其实也可以进入到这样一个行业。
目前国内数据分析行业正快速发展,
人大经济论坛CDA数据分析师作为国内领先的数据分析探索者,总结了目前大多数企业的岗位要求。要求几乎雷同,同时也说明这个职业的互通性很强,说白了就是换个行业都可以在职场上存活下来;一般需要以下几个要求:
1、统计概率基础;
2、商业数据敏感度;
3、基本工具(EXCEL、SAS、SPSS、SQL等);
4、数据分析建模,编程能力;
5、经验;
统计其实是属于数据分析的一部分,数据分析包括统计分析和数据挖掘。所以统计是必须要掌握的一部分,一般对于一名数据分析师必须要掌握的知识点是“描述性分析”,“假设检验”,“参数估计”,“统计制图”,“回归分析”。企业工作中,可以根据不同的要求掌握相应的知识。
商业数据敏感度是作为一名数据分析师的前提,对数据排斥的人当然不适合从事这个行业。
基本工具是载体,唯有驾驭工具,才能驾驭数据分析。
经验是非必要技能,数据分析是为业务服务的,最终落地要解决业务问题。
根据人大经济论坛CDA数据分析师的介绍,可以总结如下:
一、自身检查:是否适合数据分析岗位。
什么样的人适合做数据分析师?
1. 对数据敏感:对数字不恐惧,经常关注行业数据动态,能够从数据变化中自行感觉出实务背后的原因规律。
2. 耐得住性子和寂寞:耐心,就不用多说了。寂寞,与数据打交道需要你爱上数据而不是排斥数据。
3. 自学能力强:在数据分析的过程中需要经常自行研究学习一些新的思路和方法,不断修正,不断更新。
二、 从入门到精通系统学习
1. 统计概率基础:数据分析行业分析,数据挖掘经典流程,数据的描述性分析,数据的推断性分析,方差分析,回归分析,多元统计等系列理论课程,唯有掌握原理,方能驾驭工具。
2. 数据分析工具学习:根据等级的要求,一般软件在学术界和企业界的应用广泛程度为,学术界 :STATA >R > Matlab> SPSS >SAS ; 商业界:SPSS>R>SAS > MATLAB 。上手难度:SAS>R>MATLAB>STATA>SPSS>EXCEL工具的选择不在于多,而在于跟具体问题相结合,在学习的过程中可以选择1-2门的工具进行熟练使用。参考各大数据分析工具的区别。
3. 数据分析建模:利用工具进行数据分析模型、数据挖掘算法建模运用,常用的数据分析方法有(回归分析法、主成分分析法、典型相关分析、因子分析法、判别分析法、聚类分析法、结构方程、Logistic模型等),常用的数据挖掘算法有(时间序列、Panel Data、关联法则、神经网络、决策树、遗传算法)以及可视化技术。
4. 以上三部分皆为数据分析硬性技术,要想熟能生巧需要经常在学习和工作中运用,不断改善,不断优化模型,将技术与具体业务结合起来,经过长时间的积累方能成为高级数据分析师。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29