
数据分析师-数据分析师为何有专业要求
数据分析师对专业要求一般为:统计学,经济学,计量经济学,人口学,社会学,心理学,市场营销,企业管理。
在这些专业中,最主要的是有一个共性——统计。因此,对于统计概率掌握得比较好的都可以从事数据分析的工作。由于国内数据分析行业发展还不够成熟,统计学出身的学生其实真正工作中做数据分析的非常少,因为企业的需求是最近几年才上升的,所以对于很多非统计专业的人来说,其实也可以进入到这样一个行业。
目前国内数据分析行业正快速发展,
人大经济论坛CDA数据分析师作为国内领先的数据分析探索者,总结了目前大多数企业的岗位要求。要求几乎雷同,同时也说明这个职业的互通性很强,说白了就是换个行业都可以在职场上存活下来;一般需要以下几个要求:
1、统计概率基础;
2、商业数据敏感度;
3、基本工具(EXCEL、SAS、SPSS、SQL等);
4、数据分析建模,编程能力;
5、经验;
统计其实是属于数据分析的一部分,数据分析包括统计分析和数据挖掘。所以统计是必须要掌握的一部分,一般对于一名数据分析师必须要掌握的知识点是“描述性分析”,“假设检验”,“参数估计”,“统计制图”,“回归分析”。企业工作中,可以根据不同的要求掌握相应的知识。
商业数据敏感度是作为一名数据分析师的前提,对数据排斥的人当然不适合从事这个行业。
基本工具是载体,唯有驾驭工具,才能驾驭数据分析。
经验是非必要技能,数据分析是为业务服务的,最终落地要解决业务问题。
根据人大经济论坛CDA数据分析师的介绍,可以总结如下:
一、自身检查:是否适合数据分析岗位。
什么样的人适合做数据分析师?
1. 对数据敏感:对数字不恐惧,经常关注行业数据动态,能够从数据变化中自行感觉出实务背后的原因规律。
2. 耐得住性子和寂寞:耐心,就不用多说了。寂寞,与数据打交道需要你爱上数据而不是排斥数据。
3. 自学能力强:在数据分析的过程中需要经常自行研究学习一些新的思路和方法,不断修正,不断更新。
二、 从入门到精通系统学习
1. 统计概率基础:数据分析行业分析,数据挖掘经典流程,数据的描述性分析,数据的推断性分析,方差分析,回归分析,多元统计等系列理论课程,唯有掌握原理,方能驾驭工具。
2. 数据分析工具学习:根据等级的要求,一般软件在学术界和企业界的应用广泛程度为,学术界 :STATA >R > Matlab> SPSS >SAS ; 商业界:SPSS>R>SAS > MATLAB 。上手难度:SAS>R>MATLAB>STATA>SPSS>EXCEL工具的选择不在于多,而在于跟具体问题相结合,在学习的过程中可以选择1-2门的工具进行熟练使用。参考各大数据分析工具的区别。
3. 数据分析建模:利用工具进行数据分析模型、数据挖掘算法建模运用,常用的数据分析方法有(回归分析法、主成分分析法、典型相关分析、因子分析法、判别分析法、聚类分析法、结构方程、Logistic模型等),常用的数据挖掘算法有(时间序列、Panel Data、关联法则、神经网络、决策树、遗传算法)以及可视化技术。
4. 以上三部分皆为数据分析硬性技术,要想熟能生巧需要经常在学习和工作中运用,不断改善,不断优化模型,将技术与具体业务结合起来,经过长时间的积累方能成为高级数据分析师。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27