京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据“乱政” 缺乏判断或成有害资产_数据分析师培训
经过几年的发展,大数据不仅改变了普通人的生活习惯,而且对企业的战略规划起着决定性影响。然而,如果大数据由于运用不当而侵犯用户隐私被称为“数据暴政”,那么大数据判断失误造成企业决策失误则可以被称为“数据乱政”。
“大数据对企业决策的影响不应该被过分夸大,尤其是在数据质量和数量不能保证的情况下,企业决策更加离不开丰富的经验和准确的市场判断。”北京能源投资集团副总裁刘国忱在日前举行的“中国2013(首届)CIO(首席信息官)论坛”上说。
大数据与董事会
通过物联网、云计算、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,大数据正在以任何行业无法望其项背的速度增长着。 IBM的统计数据表明,目前90%以上的数据都是两年之内产生的,2012年的数据总量已经是10年前的2亿倍。
“亚马逊是最早专注大数据的公司之一,在这家公司的各种会议上,没有人会说‘我认为’,而是说‘数据’认为。利用自身海量的用户信息和积累的大数据,亚马逊可以为商家提供精准营销和个性化广告推介等。”一位接近亚马逊的人士告诉《中国企业报》记者。
就大数据对于企业发展的推动作用而言,企业营销的优化只是基础性的,最大的价值则在于对企业战略决策的支撑。因为传统企业决策流程是从出现问题到调整方向,而大数据背景下则可以转变为数据分析、数据问题。
目前,IBM等公司就在致力于为企业提供“硬件+软件+数据”的整体解决方案,更多的企业则通过设立CIO来负责为决策层提供市场数据和分析。阿里巴巴原CEO马云退休之后选择原CIO陆兆喜继任,更是突显了企业战略发展对数据的依赖。
不过,仍有相当多的企业战略都是依靠决策者个人的经验和直觉等主观因素做出的,这种方式正在遭受新兴的以大数据为支撑的客观依据的挑战。
达芙妮集团副总裁、CIO梁海璇在接受《中国企业报》记者采访时表示,目前相当一部分传统企业对于大数据的发展不够重视,甚至根本没有设置CIO,或者设置了CIO却没有发挥作用,归根到底跟CEO对大数据的理解程度有关。
警惕大数据乱政
然而,在如今信息大爆炸的时代,企业又容易对海量的数据感到困惑,他们看到的只是破碎的、零散的、局部的数据,如何通过技术对大数据进行分门别类并附以各种算法,最终提炼出有价值的数据却是难于上青天。
“数据是一种资源,但是需要经过科学的筛选、分析才能成为企业的资产,如果不能这样很好地应用则就会变成不良资产,这不但是资源的一种浪费,更重要的是可能会误导企业的发展战略。”用友金融信息技术有限公司董事总裁李友认为。
实际上,大数据的出现并不是新鲜事,微软亚太研发集团董事长张亚勤早前也说过,之所以现在受到越来越多的重视,数据分析的算法和理论趋于成熟是重要的原因,因为只有数据分析技术的成熟才能保证大数据的价值得到真正的挖掘。
需要指出的是,对于同一个数据,不同的人也会有不同的看法。调查表明,对同一个数据,人们通常更加倾向于乐观的看法,而有意回避悲观的可能。
以其所在的能源行业为例,刘国忱举例说,去年虽然多数能源企业都对市场做了大量的调研,由于决策者更加信任当前有利的市场数据,回避了国际经济复苏缓慢、国内经济增长放缓等负面因素,轻易提高产能,最终造成目前严重的产能过剩。
刘国忱表示,大数据的发展虽然对企业决策提供了重要的依据,推动了企业战略决策的变革,但是企业决策仍然离不开决策者个人的丰富经验和领导能力,目前企业最为紧缺的仍然是数据研究和业务发展都精通的复合型人才。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12