京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据是国家战略资源_数据分析师培训
大数据在科学研究和产业领域的应用价值是不容小觑的,同时大数据也会有消极的一面。要认识其中的风险,以便规范、规避问题,使其有序发展。
不能过度神话大数据的应用价值。任何一个科学研究都有前提假设,任何一个科学问题,都是在一定条件下认识和思考的。在任何时候都不应把一个简单、有限事物的价值过度夸大。面对大数据,应当关注其便捷性和有效性,理性分析自身的需求和应用价值。
大数据从本质上要求信息开放,而信息开放是一个复杂问题。有些涉及行业内部竞争,受到商业因素影响,企业不愿意开放;有些涉及个人或者行业本身的隐私或机密,无法开放。在大数据应用的过程中,对互联网用户隐私权和数据的保护,是开放信息时的重要考虑因素。
在思考这一问题时,国家应该具体问题具体分析。政府应该审慎分析哪些领域的数据能开放,考虑开放共享后数据的管理、数据的质量、数据的隐私和数据的保护等问题。
有些信息涉及个人信息、产业核心机密,甚至国家战略安全,应该加强保护,更有效发挥它的价值;有些科学界的数据、大型实验项目的成果,开放后能够促进学术交流,提升研究效率,则应该鼓励开放。
大数据的价值挖掘
如何发展大数据已经成为国家、社会、产业的一个重要话题。目前,欧美、日韩等国已经将大数据上升为国家层面的战略。将一个问题提升到国家和政府层面,说明其存在对社会和国家的综合价值。
从大数据应用的角度来看,大数据涉及重要的领域资源问题。地球信息科学、金融、信息技术、物理领域都在积极推进大数据应用落地。利用大数据提供个性化、规模化的教育,对人身体机能进行分析进而提升癌症治疗效果等,这些关系到重大民生领域的应用也备受关注。
广泛应用决定了大数据技术的发展是国家多行业、多领域的共同任务。目前,各界对大数据的理解还不够成熟,这需要政府、学界和产业合作推进各界对这一问题的认识。
挖掘大数据的价值,推动大数据的发展,政府需要发挥作用。大数据是一个众多关键行业关注的问题,从国家角度来看,大数据是一种重要的战略资源。
同时,学术界要和产业界共同支持和鼓励大数据的发展。只有学术和产业价值融合,才能真正发挥大数据的应用价值。虽然学术界和产业界关注的价值点并不完全一致,但仍存在一些共性。发现和利用其中的共性,对解决发展大数据战略中出现的问题很重要。
跨界合作是积极且有意义的尝试,学术界可以致力于基础技术的研究,盈利模式的分析则由企业去完成。同时,学术界和产业界在某些交叉领域形成竞争也是一种良性的模式。一些大企业会对前沿技术和数据积累追踪最新的学术成果,甚至自己做学术研究,学术界也在积极推进产业化思考。
目前,我国互联网产业在经过一段时间后,已经具备一定的数据分析基础,在很多领域具有结合实践发展的能力。但是大数据的价值密度是比较低的,有针对性地选择和分析,才能使数据的价值最大化,或者说使隐含的价值被人们逐步认识和挖掘出来。这应是学术界和产业界共同努力的方向。
大数据的科学问题
大数据是指利用现有分析工具无法在合理时间内处理的数据,意味着数据海量、传播速度快捷、种类丰富。大数据的本质是一个科学计算问题。
物联网的兴起、移动计算技术的发展、各类传感器等嵌入系统的广泛应用都使得人类取得的数据量在短时间内激增。每18个月,甚至每10个月,需要处理的数据量就会翻一番。在这一背景下,现有的数据分析工具在数据的表示方法、计算模式、价值挖掘技术等领域遇到了瓶颈。
一方面,极大的数据量使传统的商业数据库在处理价值密度低的大数据时,需要付出极高成本;另一方面,从数据计算角度看,传统计算机采用的算法复杂度非常高。传统计算机的计算方式依赖于机器复杂的算法,在面临极大规模的数据时,数据计算的能力受到了挑战。
这种高成本的数据处理、复杂化的数据计算,使得小样本空间下计算的优劣判定方法在大数据时代发生变化。这种挑战敦促学者尝试在研究过程中找到科学计算的特性,在信息处理模式、数据多样性表示方法上取得突破。
目前在研究大数据时,广泛采用的是Hadoop技术架构,是并行机制,即通过简单的编程来完成一个整体核心计算。在大数据时代,数据不断增长提出的增量计算要求,数据量巨大造成的近似计算要求,都让传统的应用软件和计算方法不堪重负。
增量计算要求、近似计算要求和归纳计算要求共同构成了大数据计算的科学问题。学者应该充分理解这些计算的特性,找到数据的关联关系,以便为大数据的分析和预测提供方法和手段。
大数据的产业价值
大数据的发展,既包括科学问题,也存在产业价值和经济价值问题。在大数据问题上,产业界与学术界的关注点不尽相同。互联网公司密切关注的是如何利用大数据形成新的产业链条。目前,百度、谷歌、阿里巴巴等公司正在积极研究如何利用大数据推动新的商业模式,产生新的商业链条,包括通过电子商务来建立产品的关联关系,利用大数据进行有效的电子商务分析等。
面对新技术应用时,学术界和产业界都会形成各自的态度和方案,这一点是正常的。学术界会关注如何解决科学计算的问题,产业界可能更加关注大数据如何创造新的产业价值以及经济价值。
在探索大数据的经济价值时,产业界的逐利性决定了部分企业不会致力于研究大数据的技术应用问题,也不会去思考大数据的长远发展问题,只是通过炒作概念,利用大数据进行投机。对这一现象,我们也不必过度担心。
聪明的投资者会对大数据的核心价值作出判断,审慎地分析大数据和自己的关系,市场终将用脚投票。同时,学术界不会因为市场存在炒作而忽略对问题的理解,改变对研究问题走势的判断。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27