京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据透析P2P平台跑路真正原因_数据分析师培训
跑路,P2P平台难以摆脱的梦魇,到底是“道德败坏”还是“大势所趋”?只是揣测是不行的,与真相帝拿起显微镜,透析一下P2P平台跑路的真正原因。
一、借款人态度
真相帝通过对接近50位真实借款人(限于时间和资源有限)的调研,类型大致可以分为下面几类:
1.无所谓,只要借款人能拿到借款,透露也没什么关系,有真实的实体经营,真实的资料,你来实地考察还能给他打打广告,但这只占6%的比例。
2.可以公开,但不涉及隐私,也就是说借款资料什么的完全可以公开,但只要不涉及借款人的联系方式,不知道借款人是谁就可以,这类人群比重将近66%。
3.完全不公开,他们的理念是借款人只是和投资人发生了借贷关系,没必要把他借贷的事情搞的全世界都知道。此类型占到28%。
4.自融平台不加讨论,不真实,更没有透明可言。
由上面数据得出结论。相对来说只要是真实借款人,只要不涉及自己私人信息。借款信息的披露他们是持无所谓状态,他们要的只是能借款,解决自己的问题。
二、平台借款信息的披露
1.20%的平台对于借款用户的信息是完全对外公布的。
2.50%的平台对于借款用户的信息是没有对外公布的。
3.20%的平台是资料不全,或解释没有放上去,资料公司是有的。
4.10%的平台有资料,但填充假的可以。甚至评估15万的车能贷款20万。
真相帝调研了将近100家平台,信息公布完整的多数为上市公司参股平台,以及真正有心做好P2P业务的平台,占20%。其他多为公布不完全或者不公布,不排除排名前10的平台,信息为什么不公布,投资人可以发挥无限的想象力。作者不做评论与猜想。
三、投资人对于借款信息的态度
真相帝对于投资人的调研结果真的是啼笑皆非,下面看看你们属于那一种。
1.跟风型:看到身边人投资了就去投资,不管项目利率的高低,不管项目的真实性,死跟,对项目真实性和透明完全没有概念。
2.盲目崇拜型:对于那种数一数二的平台,盲目的崇拜投资,无谓时间长短,无谓项目利率高低,无谓项目的真实与否,信平台得永生,管有没有资料呢。
3.迷茫型:身边有个同事,问真相帝哪个平台安全,真相帝随口说了句HL可以,然后,然后就砸了2万买进一个年化8%的标,而且是长期一次性。
4.电脑文盲型:听说哪个平台可以,然后一次性全部投资,真相帝问为什么,答案是自己不会操作电脑,请人操作,自己学起来麻烦。
5.投机型:这类人有丰富的投资经验,只限于新平台捞一把就走的,属于玩心理战术,对于平台透明不透明关系不大。
6.业内投资人:精通各种玩法,活跃于多个中型平台,他们大多求稳,会考究平台实力,项目真实,资料透明与否。
投资人的比重真相帝不说,估计大家心理有数。第1、2、3、4类占人群比例的77%,剩下23%才是第5和第6类。
大家可以看的出来。除了投机者和业内投资人对于项目有个最起码的认识外,其他人群完全没有投资的风险意识,好像项目的透明度和自己没有关系。
这只是一组数据,但是可以推衍出太多的问题。有人曾说过,透明度是平台与投资人的博弈,可在真相帝看来不是,压根就没出现过博,何来博弈之说。也有人说过,平台强势,投资人弱势,可笔者看来,不是投资人弱势,是他们不懂如何强势,不管多强的平台,资金链失衡,它还怎么活?
平台不公开借款人相关借款资料,投资人要求了吗?不要一味只说平台如何,改不改是平台的事,要不要求是你们的事,金子在自己手里难道还没有主动权?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20