
大数据对社会创新的作用_数据分析师培训
“大数据”一语用来描述数据的日益增长和我们不断加强的有效利用数据的的能力,并且大数据已经在科学和商业领域获得了极大的应用。但是在社会领域“大数据”的应用却是滞后的。
大数据所提供的信息和帮助解决社会问题之间存在巨大的鸿沟。有一些社会问题可以通过大数据来解决,例如利用交通流量数据来缓解高速公路交通拥堵问题;但另一些社会问题的解决却没那么容易,例如如何利用数据来解决无家可归者的问题,或者贩卖人口的问题?
社会问题之所以复杂,是因为涉及的利益相关者众多,所以目标也是多重的。不像技术问题一样,目标往往是单一的,比如说优化。但在社会问题上,到底什么叫“优化”呢?尤其是社会问题往往涉及政府的公共政策和行政机构的介入,使得社会问题又不单纯是社会问题,而成为政治问题。
大数据使用的问题
另一个问题与大数据本身的使用有关系。事实上,但切入一个社会问题时,你可能会遇上不上数字,但这些数字往往不是结构化的,很难被调用。结构化的大数据相对缺乏有四个主要的原因:数据淹没在行政系统、数据管理标准缺乏、数据往往不可靠以及数据可能导致意想不到的后果。
比如说,全球每年被贩卖的人口估计高达3000万人次,这是个约320亿美元的“产业”。要打击人口贩子,大数据当然可以帮忙。但问题是人口贩子用的手机、社交媒体、在线广告和其他网络平台产生的数据,并没有被系统的收集,更遑论共享给相关的组织。当然原始数据本身的收集就很难,并且各个组织之间的数据共享做得也不到位。
更糟的是,打击人口贩卖的各家机构经常互相争夺的稀缺资源:无论资金、捐赠还是来自媒体和社会的认同。因为这种竞争,各机构之间的数据共享几乎不可能。例如,北极星项目(the Polaris Project)一直致力于打击人口贩卖。2003年至2006年,Polaris为被贩卖的幸存者提供热线电话。2007年,美国卫生和公众服务部选定Polaris作为全国首个国家贩卖人口资源热线。多年来,Polaris记录了75000多个呼叫;然而,获得这些数据受到限制,其可靠性和来源鲜为人知。
如果Polaris信息向公众开放,并结合其他数据源,如经济指标、运输路线、教育统计和受害者服务等,能更加有效帮助打击人口贩卖。2012年Google Giving(谷歌捐赠)授予Polaris和另外两家国际反人口贩卖组织300万美元以资助将他们三条电话热线收集到的数据予以整合,并发展为国际热线。目前,三个组织都已在全球人口贩运热线网络(Global Human Trafficking Hotline Network)下联合起来。这是一个积极的迹象,但是这次的合作成果仍有待观察。
增加大数据使用的步骤
大数据于决策时充分了解信息以帮助解决世界上最棘手的社会问题有着巨大潜力。但是要做到这一点,有关数据的收集、组织和分析的问题必须首先得到解决。下列四项建议有助于创建数据集,并以此为据进行决策。
首先,在关键问题上建立全球数据银行。全球需要对复杂的问题,如贩卖人口、全球饥饿和贫穷创建大型数据银行。数据银行有处理不同数据格式和描述数据集的元数据的能力。为了做到这一点,促进专题问题的数据共享需要创建多部门的联盟。
其次,让公民参与和公民科学。大数据不是专业人士的地盘。公民也可以参与帮助创建和分析这些数据集。随着通过开放的数据平台数据激增,越来越多的公民通过“公民科学”来开创新理念和产品。
再次,建立数据管理人和分析人的框架。今天,我们不仅缺乏可以解决社会问题的数据管理人和分析师,对于接受必要培训和能力的现有人员,我们的途径也是有限。在大多数情况下,我们将数据科学留给了科学界和商界。社会科学往往给学生提供简单的统计基础知识。如果我们要利用大数据,这种做法是不可接受的。我们需要让学生和分析人员掌握必要技能,以管理数据同时也创建大型数据集。我们要开发课程,让学生了解数据的组织、保存、可视化、搜索和检索以及使用。除了这些技能,要让学生能更多地思考能利用数据做什么是至关重要。考虑数据集之间的网络关系,以及如何发现数据集中的潜在模式,是需要开发的能力。
最后,促进虚拟实验平台。为了提高我们对如何使用大数据解决社会问题的理解,我们需要推动更多的实验。虚拟实验平台,允许个人交流思想、与别人的想法交流、携手合作以找到解决问题的方法或利用机会,它能够将各个感兴趣的相关方聚集在一起共同打造大型数据集、开发创新算法来分析和可视化的数据,并开发新知识。如果我们要使用大数据解决社会挑战,虚拟实验平台是必不可少的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16