京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的不平等问题_数据分析师培训
一家国际著名保险公司与提供大数据的公司合作,推出一款针对不同驾车群体的保险计划。这一计划的要点是,由大数据公司对不同潜在客户的驾车习惯进行分析,如果数据表明某位客户是白天上班,路也近,而且所经过的地带是安全路线,客户驾车习惯良好,没有特别情绪化举动,那么,给其所卖的保险可以打折;反之,如果数据表明某位客户是上夜班,上班地点也远,所经过的路线有风险,客户驾车习惯也不好,常无法控制自己的行为,那么,保险公司将提高其所缴纳保费额度。从商业角度看,保险公司这样做,是为了更精确地细分市场,赚取更高利润,这是无可厚非的,甚至还算得上大数据时代商业营销的成功案例。但就是这一行为,在欧洲引发了一场关于大数据时代社会平等问题的讨论。
在使用大数据分析后发现,在欧洲上夜班、且上班地点远、驾车经过路线复杂的,大多是低收入者和有色人种。由于长距离驾车,且夜班易疲劳,这部分人群的驾车习惯相对不那么好,驾车时情绪也不那么好控制,不少人甚至一路骂骂咧咧。而那些中产阶层以上人群,一般都上白班,上班地点近,路线也很安全,驾车习惯也好。如果按照保险公司的方案,这就意味着在社会学意义上本应该得到同情甚至帮助的低收入者,反而要缴纳更高的保费;而本来收入就高的人群,反而在获得保险上能得到优惠。如此一来,如何谈得上社会公正?
其实不仅仅是保险业,当下在欧美,大数据与金融行业的结合正越来越受到重视。一些商业银行利用大数据,寻找最合适的放贷对象,排除潜在的可能违约者。而事实上,所谓最合适的放贷对象,往往就是那些收入有保证、信用记录好、能还得起贷的高收入者;而潜在的可能违约者,多是那些本来就生活在社会底层,很难有好的信用记录的人。恰是后一部分人,他们有心创业时,更需要得到金融方面的支持,而由于大数据时代任何个人收入情况、信用情况、创业成败记录以及家庭背景等等,都一览无余。于是,与大数据时代以前任何一个时代相比较,低收入者更可能被排斥在资本市场之外,他们与有产阶层的财富鸿沟无疑也将进一步扩大。
美国一个黑人学者研究大数据库后还担心,在大数据时代,将强化种族歧视,且不给任何一个犯过错误的人以改过自新的可能性。在谷歌为某些企业定制的就业数据库中,这位黑人学者填入一些姓名后发现,与白种人相比,数据库中对黑人提供了更为详细的信息,这些信息中包括了家庭是否离婚、性取向、宗教和政治观点、智力水平、成瘾药物使用等等,这使得企业对使用黑人更加谨慎。不仅如此,数据库还特别搜集到联邦警务、检察和法院系统发布的各种信息源,一旦所查询的对象曾有公开的违法记录,就会自动触发一个警告设置,告诫企业人力资源部门:这个人有不良记录,小心雇用。因此,经过大数据的筛选,凡有过违法记录的人,几乎很难靠自身在市场上获得就业机会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20