
不久前,国家统计局与11家大数据企业签署了战略合作框架协议。作为行业中的翘楚,这些企业各有各的特点。如阿里巴巴、1号店都是国内最著名的零售网购企业,五八同城是知名的求职就业平台,百度拥有最大的中文搜索引擎……战略合作协议取不同企业的共性,表达了合作的愿望和意向,明确要共同研究探讨建立大数据应用的统计标准,包括指标定义、口径、范围、分类、计算方法、代码等;共同研究确定利用企业数据完善、补充政府统计数据的内容、形式及实施步骤,包括数据采集、处理、分析、挖掘、发布等;并在各方一致同意的其他方面开展合作。
无疑,签署协议表明合作有了一个良好的实质性的开端。但是,在政府统计中应用大数据确实是一项非常复杂、难度极大的工作。特别是要把庞大、海量、类型不同、标准各异的非结构化数据转化成结构化数据,从统计制度方法到数据处理技术、以及具体的组织运作,都面临着极大的挑战。因此,需要认真梳理现有的大数据企业及数据类型,并分析其对政府统计带来的影响,由简单到复杂,分层次逐步渐进式推进。
第一个层次,相对简单、投资少见效快的项目,可以先上快上。年内早些时候,在参观百度总部的时候,有管理人员曾向我们介绍:原来如搜索北京地区天气预报,显示出的是中央气象台、北京市气象局等相关网站和一些发布天气预报的消息,需要继续点击才能查询到天气信息;而与气象部门合作,只要输入有关的关键词,数日的气象信息马上就可以显示出来,使用户能够得到更加准确、方便的服务。他们表示,与统计部门完全可以采取相同形式的合作。确实,目前搜索某些年度、季度、月度主要指标数据,可能会出现成百上千条相关信息,用户或者要从浩瀚消息中去粗取精、去伪存真,或许要登录统计部门的网站点击再点击,一步步地找到自己需要的统计信息。如果与最大的中文搜索引擎合作,查询许多统计指标就可以一次性到位。这难道不是服务型统计建设的一项切实有效的措施吗?
第二个层次,比较成熟的大数据产品,可以先拿过来。诸多大数据企业,都基于自身业务中源源不断产生的大数据,研制开发了自己的大数据产品,有些已经在业界乃至社会上产生了较大的影响力。如阿里集团旗下企业开发的淘宝价格指数(ispi)、天猫物流指数,如昆明泛亚的有色金属交易价格指数,都属于企业推出的相对成熟稳定的产品。虽然这些产品在覆盖面、代表性、稳定性等方面,与政府统计部门的同类指标数据相比还有差距,但其却在实时性、超前性方面具有优势。所以,如果能够对其计算过程作一些了解剖析,如果方法确实科学可行,能够说明一定的问题,不妨将其纳入政府统计相关数据的发布体系中来,作为政府统计的一个补充,提供社会各界的用户参考。
第三个层次,工作量大、技术难度大的工作,可以逐步稳步推进。与企业合作,在政府统计中应用大数据,最主要、最重要、也是难度最大的工作就是,如何把网上生成的海量数据作为政府统计的数据源,导入政府统计的统一数据处理平台,并进行加工处理,生成所需要的专业统计数据,如价格数据,如商品零售数据。一方面,需要从制度方法入手。选择有影响和代表性的电商,了解其产品分类及标准,深入研究与政府统计在标准、代码、口径、范围等方面的差异,探讨统一或衔接的可能性及办法;另一方面,需要从数据处理技术入手。选择在大数据处理方面技术领先的企业,提出在网上抓取、导入大数据,并与政府统计实现对接、转换,进而按政府统计的要求进行加工处理和分析的业务需求,了解技术型企业在技术处理方面的满足程度。
第四个层次,理论、科技含量高的工作,可以有选择地进行。比如与有关企业合作,通过网上数据和关键词搜索,建立经济模型,开展经济形势分析、预警预测分析,为宏观乃至微观层面的决策提供参考依据。可以结合经济社会的发展情势,有选择地确定研究题目,共同进行数据处理,并进行分析研究,推出研究成果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11