
大数据产业链清晰_数据分析师培训
运营商大数据产业链主要分为四层:即大数据采集、大数据管理、大数据应用及大数据运营。
大数据采集是大数据产业链的底层基础。目前政策要求数据全采全监,包括通话记录及内容、短信记录、位置的轨迹信息等管道内特有数据,所以数据采集成为了运营商的刚性需求。政策及4G助力采集市场率先爆发。而大数据采集对进一步做大数据管理、应用及运营有着最直接的支撑。
大数据管理通过数据共享平台实现。数据共享平台主要由数据汇集、数据支撑、数据接入点三层组成,向下可以支撑数据采集层,向上支撑外部数据应用系统。在数据采集过程中,有时一个口有超过十套系统在采集,比较杂乱。大数据共享平台是趋势,即将采集好的数据放在共享数据池中,实现共享避免重复采集,这也是运营商比较偏好的方式。
大数据应用主要包括基础应用和行业应用。基础应用,包括网络管理和优化及客户关系管理;行业应用,包括企业业务运营监控和经营分析。
大数据运营终极目标:增值业务和精准营销。增值业务:利用特定的网络数据,创新增值应用,增加运营业务收入。简单来说,数据采集阶段形成了最全面、最及时的数据,通过具体时间段、具体地点(实际或虚拟)客户行为的趋势性分析,即可形成非常有价值的判断,再通过指定的要求来分析,即会形成更有指导意义的结论。精准营销:通过对移动互联网用户的行为分析,进行用户偏好分群进而建立精确的用户画像,并开展针对性的市场营销及配套服务。
对于数据采集公司来讲,面向核心网各个功能域采集数据。通过对移动、固网中控制数据和用户数据的采集分析,并对监测报告进行深度解析,发现数据应用的潜在特征进行识别。
中国移动设备数据流量2014年增幅接近50%。根据工信部数据,包括智能手机在内,中国各类移动设备2014年的平均流量首次超过200MB。但根据思科的统计,全球智能手机2014年平均数据流量达到819MB。这从侧面显示,我国平均流量水平还有很大的提升空间。
三大运营商中,中国移动2013年底率先拿到TD-LTE牌照,拉开了我国进入4G时代的序幕。中国联通和中国电信2015年2月底才拿到FDD-LTE牌照,4G建设将全面铺开。4G时代对运营商的重大变化即为,传统数据(信令)采集业务也将由过去的2G、3G以语音和短信为主全面向4G数据(上网)业务拓展,而4G大量的图片、视频信息也将在采集规模上远远超过2G、3G。
据我们测算,在2G-3G时代,电信及联通在信令和DPI采集领域投入约20亿-40亿元。随着FDD牌照的发布,三大运营商均进入4G时代,都在加大数据采集领域的资本开支。我们之前预计,今年三大运营商规划的采集规模或达25亿元,其中以中国移动4G为主。但从年初招标的情况来看,竞争相当激烈,移动一期的招标最终成交价可低至最初规划的1/10水平。预计今年最终合计将在15亿-20亿元之间的水平。当然,各厂家在初期血拼是为了“圈地”,即进入运营商集采或是省分的供应链体系,这样才能够获得后续扩容,并通过扩容来实现盈利。随着4G渗透率的大规模提升,数据采集的需求量将现指数级增长。
随着三大运营商都大力推进4G建设进程,其共同发力将进一步提升4G的普及率,数据量级的增长将相当显著,我们认为运营商数据“采集”业务将在未来几年出现大规模爆发。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22