京公网安备 11010802034615号
经营许可证编号:京B2-20210330
"工业4.0"重新"涂装"船舶工业 国产智能船驶向"大数据之海"
两艘总吨位逾20万吨的远洋船将在年内接受“手术”,获得思考、学习和自我诊断能力,并能告知船东“怎么航行最赚钱”。它将是中国制造的第一批智能化船舶。
全球最大造船企业——中国船舶工业集团已与航运企业达成一致,不仅为后者造船,还将处理智能船产生的大量航运数据,这让船厂的领地从制造拓展到全寿命周期服务,由此形成全新的价值创造模式。
物联网、大数据、智能化、服务化——智能船鲜明的“工业4.0”色彩正在重新“涂装”船舶工业。中船集团副总裁南大庆说,“工业4.0”是我国船舶产业尽快赶上世界先进水平“千载难逢的机会”。中央“千人计划”特聘专家、美国辛辛那提大学教授、智能制造的领军人物李杰表示,船舶业的“工业4.0”探索对提升“中国制造”水平有着极大的借鉴意义。
会思考的聪明船
为了开发智能船,中船集团调动了大量资源,包括中国船舶工业系统工程研究院、上海船舶研究设计院、沪东中华船厂、沪东重机、黄埔文冲船厂等。第一代智能船将拥有300多个传感器,可以连续感知船舶运行与海况环境,每天产生数据超过10G。系统工程院院长张宏军透露,由此形成的“思考能力”将让机器分担船员50%的工作。
让船“会思考”,对航运保障意义重大。它能随时监控船员操作,持续评估零件状态。张宏军说,大部分船舶事故来自误操作,智能船有望将事故率降低70%;假使能预知零件故障,就能提前订好备件,送往船即将停靠的码头,这可将船舶可用时间增加10%。除了“自省”,智能船还会“学习”。整个项目将在岸上建立数据中心,把天气、油价、运价等动态信息导入经济模型;远程获取这些知识后,智能船就能选择最合理的航速、航线。
有些意外的是,智能船并不贵。在其300多个传感器中,新增硬件不多,关键是依靠软件建一个“大数据池”,将大量数据汇总关联,相当于在虚拟空间里重建了船与海。
张宏军说,过去船舶拥有大量自动化设备,但就像一个个信息孤岛,产生的数据虽多,但零散、静态,无法提炼出整条船和航路的最优方案:“我们理解的‘工业4.0’,就是实现装备与信息的深度耦合。”
中船集团已计划新造一艘功能更完备的智能船,预计两三年后下水,新船设计已在上海启动。虽然国外已在开发“无人船”,但离不开人的遥控;相比之下,能“独立思考”的国产智能船可以说比国外“无人船”领先一代。
重构的生产关系
智能船第一次有机会打通船舶业的整条产业链——研发、制造、运营,从而创造出新的价值。李杰说,借助大数据发现并弥补需求的缺口,将制造业向服务拓展,这是典型的“工业4.0”。
中国远洋(运输)集团、招商局能源运输股份有限公司等航运巨头已加入中船集团的“工业4.0”联盟。中远集团战略发展部负责人高勇军说,航运业面临激烈竞争,必须提高管理精细度,对市场走向、投资回报、船队运营等给出精确解答。“许多问题过去只能凭感觉,‘该买几条船’这类事关百亿元级的投资也只好把握个大趋势。大数据也许能使这些问题迎刃而解。”
数据最主要的来源是船,最好的解读者则是船厂和航运公司,但过去一旦交船,双方就不再有什么往来。有了智能船的“粘合”,中船、中远将围绕数据开展合作,对接造船和驾船的特长。高勇军认为,这是“工业4.0”时代的共生关系。
共生不仅是双赢,大数据还能从源头上支撑船舶产业的创新——航运公司最需要什么船和发动机,设计方都可以在这个数据服务生态圈里获取养分,从而形成一个完整的创新闭环。
无论是制造方还是运营方,都倾向于把智能船引领的变革更多地看成一次“生产关系重构”——各方必须对现有价值体系进行调整,比如船厂怎么为数据服务定价,航运公司又该如何与第三方共享关键商业数据。
为中国制造探路
开发制造一艘远洋船,涉及的技术和部件覆盖了制造业85%的门类。
而且在中国,造船业是感受全球化竞争最充分的行业,它的“工业4.0”尝试其实是在为整个制造业转型升级探路。
中国制造业的装备智能化程度、信息服务业配套都比较弱,发展“工业4.0”,不应跟着领先的德国、美国亦步亦趋。李杰认为,“中国制造”的优势是贴近市场,拥有无可比拟的用户量。因此,用好用户数据,才能走出有中国特色的“工业4.0”之路。在他看来,中船、中远等联手探索,已形成了独特的价值视角,这些经验加上逐渐完善大数据处理技术,可以很方便地向高铁、发电、航空等制造业复制。
中船、中远等都认为现在到了发展“工业4.0”的时候,大家已有共识:大数据已经可以带来利润;反过来,如果对产业趋势“看不见、瞧不起、看不懂”,将来就会“来不及、活不了”。
最近几年,船舶和航运市场迅速转冷,压力之下,大家都意识到必须摆脱粗放的发展模式,创造新的价值。高勇军说,中国拥有大量低成本的技术人才,华为曾借此轻松打败了通信业的国外对手,而在“工业4.0”领域,这一幕应该有机会重演。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04