京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据应用工业企业升级的王道_数据分析师培训
制造业的数据总量居然超过了政府部门的数据总量,这个结论还是让我吃了一惊,因为在2000年的时候,我还记得那个时候说,数据总量80%在政府,那么中国这个制造大国,面临美国的工业互联网,德国的工业4.0,不是一个上不上的问题,而是一个怎么上的问题,否则,毁灭你与你无关。
回想这25年来的信息化工作,数据、信息、知识,还是给企业带来了巨大的价值,(CDA数据分析师培训)所以笔者才提出了一个理念,就是传统企业利用大数据思维,收集具有统计学意义的小数据,进行分析应用,就可以获得巨大的经济价值。
工业大数据指在工业领域中产生的各种数据,事实上相对于互联网数据、营销数据,工业数据覆盖着整个价值链、生态圈,甚至笔者现在提出升级的工业企业必须三流合一,这三流就是物流(包括物的变化,这是工业企业的核心,然后才是运输、仓储意义上的物流)、资金流、信息流,做到三流合一才是一流的工业企业。
工业企业随着信息化软硬件设备、系统的普及应用,包括条形码、二维码、RFID、工业传感器、工业自动控制系统、工业物联网、MES、CAD/CAPP/CAM/CAE/CAI/CAQ、PDM 、ERP等等,工业企业拥有的数据越来越多,这些数据同样具有大数据的特征,工业企业能否按照大数据的思维方式实现企业的数据应用,是值得我们深思的大话题。
笔者还是按照大数据的4个V,也就是数据量、数据种类、数据速度、数据价值四个方面对工业企业的大数据进行解读。
要想发现隐藏的知识,必须具有足够的数据量,笔者曾经培训一个铝轮毂企业的PRO/E软件中的有限元分析,企业的需求就是如何提高铝轮毂的设计一次成功率,笔者教会了企业员工如何建模,如何加约束,如何加载荷,如何网格划分,如何设置相关工况,如何计算,并分析计算结果,然后很现实的问题就是,分析结果出来以后,强度应力值,结合安全系数,到底取多大,笔者是没有数据基础的,只能告知企业的员工,你们回去后,计算至少10个产品以后,结合试验数据,最终确定强度应力值的阀值。不过值得欣慰的是,过了半年左右,和企业的员工联系后,他们告诉我,有限元分析已经普及化应用,现在试验失败的设计已经大幅度降低,印象说法以前15%左右,每个月总有几个,超过10个也有,现在一个月难得有一、两个。
然后说数据种类,随着客户要求的提升,例如服装企业,曾经1个半月的交期,现在要求一周,以往的工作模式,根本完不成,那么为什么完不成。分析其原因,来回返工,各种更改是频繁发生,那么从一个具体的设计变更来说,以前只需要发出变更就OK,现在变更必须查询物料情况,确认物料才可以,以前设计结束了,如何检测,检测部门自己定,差错是经常的,现在是设计变更、物料、检测单必须三单齐才可以下发,那么这就意味着操作者必须考虑更多的数据,也可以说成大数据,那么这种情况下,就必须足够的信息系统支持,而其产生的数据,数据的量、种类,也大幅度上升,这种模式下,其产出也就变成了大数据。
第三说时效,其实对于工业企业,生产部门的数据的及时性要求甚至比互联网企业更高,例如生产线的高速运转,一台关键设备出现前期缺陷,如果不能及时处理,进一步扩大,将导致设备瘫痪,整个生产线停转,产品就不能完成,而更要命的问题是,工业化生产是规模化的,缺一个零件,整个产品就出不了厂,例如某汽车配件企业产品出现问题,汽车总装厂停线两天,直接造成数以亿计的损失。再从单元设备角度,工业制造过程往往伴随强大动力,一旦设备故障,将会产生人生伤害风险,安全事故时有发生。所以工业企业如何利用大数据手段提升效率,是很多企业重点考虑的问题。
第四说价值,拿设计来说,设计中会有很多方案,经过多次比选,选择了一个方案,绘制图纸,而淘汰的方案就放弃了,那么这些淘汰方案就没有价值了吗?以往由于存储成本问题,企业往往丢弃了这些东西,因此造成的结果就是知其然不知其所以然,例如某企业的零件经常出现问题,但是技术人员还是不敢改,原因就是怕改了更糟糕。也有个例子,某汽车企业引进一个车型,将长度加了10厘米,结果整个动力学性能不可同日而语。所以如何积累那些以往丢弃的过程数据,对于工业企业也是个值得深思的话题。
笔者崇尚的大数据思维,简要从数据的电子化采集、数据的视角高度、数据应用三个方面做一些描述。
数据采集的手段可以包括人工采集、电子化采集、网络化存储、平台化存储多个层次,不同的层次将带来不同的价值。一个汽车企业,油漆温度要求2个小时采集一次,而一位熟人告诉我,目前模式工程师们几天填一回,那么如果油漆出现问题,需要处理的车的范围将是管理期望的数十倍。于是我跟这位熟人建议,企业真的重视,那么可以用电子采集手段啊,把数据传到服务器,数据的产生同时包括生成时间,而这个时间是服务器时间,这样工程师就不能控制了,以往手写的,随便写。她又问我,那如果工程师不看表就乱填怎么办,我的回答是,那就只能上自动化采集设备了。而类似的,一个企业产品质量偶尔出问题,企业最终决定,上一套工控系统,在一次又出现问题时,经过分析,认为员工一定没有正常上班,否则不会出现这样的数据,最终员工交待,当时他在睡觉,而之后,该产品再没有出问题。
数据的视角高度是指生产的各个环节的数据流,例如有企业,设计部门做完三维设计、做二维图纸,发给工艺部门的是二维图纸,三维模型不给的,因为不符合管理规范,于是工艺部门再根据二维图纸进行三维建模,可想而知其效率与质量,生产误时间不说,还经常看不懂,错误频繁。这是在两个节点之间的数据处理问题,而更高的层次,是整个生产流程是否可以拿到所有的数据,数据的传递过程中,是否出现偏差,这也是个非常大的问题。某企业被客户投诉,三天之内就赔付了50万美金,内部处理开掉了一个设计师,原因就是工厂生产采用了某个国产零件,而该零件是国外客户明确指定供应商的,而追查起来,是总部设计师没有把这条信息传递到工厂。
第三说数据的应用,当我们采集了各个环节的数据,以全局性眼光、改善性眼光来看待的整体工业流程时,将会发现很多可以创新改进的机会,或者对企业的关键节点进行优化,就可以获得巨大的经济收益。例如某企业一名普通员工,提出供应商的一道工序,我们也有一道,能不能两道合一道,企业采纳了,与供应商协商执行后,一年就给企业节约200万美金的采购成本。某企业实现了客户订单有纸面传真,改成电子化,又由电子化上升到标准化,通过一个自动化转换平台(转换部分达到总订单85%),实现客户订单信息向生产指令的自动化转换,结果大幅度提升了企业的订单完成时间,原来一般一个月交期,现在7天,加急订单三天,企业的人员规模除增加两名软件开发人员以外基本没变,企业设备基本没变,而一年的时间,企业的产值从2个多亿上升到7个多亿。而从数据的应用看,一个企业通过工程机械的开工情况分析,得出经济危机将至的结论,减少了扩张,成功避免了损失。一个企业通过分析产品的最终用户,而不是仅仅象以往一样只是从渠道那里拿到一些汇总数据,经过分析,确立了一个细分市场,结果成功形成了规模化,硬生生在一般人眼里的红海中开辟了一块天地。
随着全球经济一体化、互联网、移动应用,大数据的应用,企业面临的是前所未有的竞争环境,利润空间日益变薄,拿GE的工业互联网说法,至少节约成本1%-1.5%,但是这1%-1.5%可能就是工业企业的生死线,例如某企业1500美金的产品,利润只有10块美金,而如前例,一道工序优化,就为那个年产值2.5亿美金的企业带来了0.8%的成本节约,所以笔者以为,用大数据思维分析企业,应用大数据,改进企业流程,优化工序,创新产品,改进客户关系,从而实现企业整体的优化,达到升级,是一条王道
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01