
大数据的OLAP技术_数据分析师培训
在互联网的技术浪潮冲击下,不少传统企业也纷纷涉水大数据技术。以笔者经历的两个项目为例,传统企业与互联网公司相比有两个特点:
①企业应用比较笨重和复杂,云计算等基础架构平台,互联网需要的是水平规模化扩展,但对传统企业来讲,更需要的是垂直一体化部署复杂的依赖并且方便重用;
②企业数据,包括关系型的交易数据、日志、文档、电子邮件等等,但总体还是结构化数据占多数;互联网则是非结构化数据为主,如网页、图片、服务器日志等,在网页搜索或广告推荐等领域,高维数据分析比较常见。
和企业私有云的架构一样,对企业的大数据平台,我们很难直接去简单复制互联网的海量存储或计算平台技术,如Hadoop、HBase、Spark;因为这些技术搭建的只是一个数据的基础设施,要在传统企业实施“大数据平台”,我们的思路是,如何将传统的商业智能运行在“大数据平台”之上。
OLAP – 联机分析
OLAP联机分析是从多维信息、针对特定问题的联机数据进行访问和分析的技术。从分析的角度出发,数据源需提供以下操作支持:
下面是一个数据表示例:
通常OLAP的多维数据源由数据方(Cube)提供,关系型数据库或数据仓库都能提供数据方的设计,相对于数据库,数据仓库是昂贵的软硬件解决方案,而互联网普遍采用基于Hadoop技术构建的海量数据处理平台,在这里是否可以作为数据仓库的替代品呢?其核心技术还是,如何基于Hadoop来构建数据方。
Pre-aggregate – 预聚合数据
对数据库来说,数据聚合通常是实时的。实时聚合的好处是灵活,可以对任意列进行查询,缺点是CPU、I/O开销较大,数据量大时查询缓慢,吞吐量低;而对Hadoop这样的非实时计算、大量数据处理的平台来说,很适合对数据进行预聚合处理,预聚合的优点是查询快速高效,但缺点是无法灵活查询,比如未进行聚合处理的数据。
在基于Hadoop进行预聚合处理上,Adobe提供了一些经验:
这个步骤的目的是理解数据并且构建出领域模型,包括:
下面是Adobe SiteCatalyst的设计参考,源数据是一条日志,使用reports.json来描述整个设计:
数据采集优化策略
对历史数据,采用大量数据批处理来提高吞吐量,对新增的增量数据,尽量达到低延时查询。一些优化策略包括:
对输入进行条件过滤:
提升Map的任务数:
数据处理
数据处理的过程包括读取源数据、预聚合并且生成可供查询的数据表,对OLAP而言,需要对数据进行以下处理:
以下是Adobe在线数据处理设计和SQL查询的映射:
在reports.json中定义了触发各个处理的类:
整个处理过程如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10