京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对大数据现象和概念追根溯源,大致可以分为三个阶段。一是20世纪80年代至90年代中期,是大数据认知的萌芽阶段。1980年,美国著名未来学家阿尔文?托夫勒在《第三次浪潮》一书中将大数据盛赞为“第三次浪潮的华彩乐章”。二是20世纪90年代中期到21世纪前10年,是大数据广受各界关注的阶段。美国高德纳(Gartner Group)公司的分析师道格拉斯.兰尼(Douglas Laney)2001年首次从大数据的特征的角度对大数据进行了相对明确的定义,强调大数据必须具备3V特征,即容量大、多样化和速度快。三是2010年至今,是大数据战略应用被提上日程并迅速发展的阶段。美国总统科学技术顾问委员会于2010年给奥巴马总统和国会呈报了题为《规划数字化的未来》的报告。麦肯锡公司于2011年发布了《大数据:创新、竞争和生产力的下一个前沿》的报告。2012年更是一个重要年份。1月,瑞士达沃斯世界经济论坛发布报告《大数据大影响》;3月,美国奥巴马政府颁布了《大数据的研究和发展计划》;5 月,联合国秘书长执行办公室发布了《大数据促发展:挑战与机遇》的报告;6月,经合组织OECD统计委员会第9届会议发布《使用大数据作决策》研究报告。2013年则可以称为中国统计的大数据元年。7月,“大数据时代统计学:机遇与挑战——中国统计学高端论坛”在上海财经大学举办;10月,主题为“大数据背景下的统计”的第十七次全国统计科学讨论会在杭州举行。11月,国家统计局与阿里、百度等11家企业签署了大数据战略合作框架协议。
什么是大数据?麦肯锡报告的定义是,“大数据是指大小超出了传统数据库软件工具的抓取、存储、管理和分析能力的数据群”。维基百科(Wikipedia)的表述是,“大数据是难以用现有的数据库管理工具处理的兼具海量特征和复杂性特征的数据集成。”涂子沛将大数据定义为那些大小已经超出了传统意义上的尺度,一般的软件工具难以捕捉、存储、管理和分析的数据,认为一般应该是“太字节”的数量级。阿里创始人马云则说,大数据就是一种服务。而我们的同仁在研究中提出:大数据是指采用多种数据收集方式,汇集不同数据源,通过采用现代信息技术和架构能够高速分析处理的、具有高度应用价值和决策支持功能的多种类型数据及其技术集成。
从存在形态看:大数据分为可以用二维表反映的结构化数据和不能以二维表反映的非结构化数据,如音频、视频、图片等。从数据来源看:大数据可分为行政记录数据、商业记录数据、互联网及搜索引擎数据三大类。行政记录数据包括个人信息记录数据,单位信息记录数据和自然和资源记录数据等;商业记录数据包括电子商务交易数据,企业生产经营数据和信息咨询报告数据等;互联网数据则包括搜索引擎数据,新闻媒体数据和社交平台数据等。而大数据的特征,从最初的3V已经被归纳为6V加1C。即数据体量大(Volume),类型多样化(Variety),处理速度快(Velocity),应用价值大(Value),数据获取与发送的方式自由灵活(Vender),准确性(veracity) 和处理和分析难度非常大(Complexity)。
相对于传统数据,大数据多是自动化或半自动化生成;数据的搜集、处理、存储和分析能力都已极大提高;数据主体和来源日趋多元化;非结构化数据占绝大多数;需要大量过滤才能提取有用价值;隐私与安全也存在着巨大隐患。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09