京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据需要建立规则和标准_数据分析师培训
作为在上世纪90年代就提出可穿戴设备概念的潘特兰教授,在大数据方面也享有卓著声誉,但他对大数据的看法,站在互联网业者的角度来看略显保守。因为他最为人称道的几个研究方向并非大数据的应用,而是个人数据采集规则,大数据安全和隐私等。不过这些在我们眼里看上去远比不上大数据发展优先的主题,并不妨碍他成为大数据领域首屈一指的专家。
潘特兰的学生中牛人辈出,有发明谷歌眼镜的,也有发明面部识别技术的。潘特兰本人则较为热衷于为大数据采集和应用制定规则,设立标准,甚至还在世界经济论坛这种重大场合为政治及经济人物提供各种与此有关的建议,可以看得出,大数据的规则和秩序是他更为看重的主题。这在当前整个社会对大数据的狂热情绪下,似乎显得有些违和,但谁也不敢肯定,几年后这未必就不是一个至高议题。
与那些喜欢做美食但自己不吃的厨师一样,潘特兰作为可穿戴设备教父,自己是不戴可穿戴设备的。虽然没有明说,但他对产自IT界的各种可穿戴设备所表现出的鄙夷,还是能够令人清晰感知到的。吃饭的时候他曾表达过这样的意思:不要相信那些现有的可穿戴设备,未来的大数据与之没有半点关系。而在现场视频中对各种市面上常见的可穿戴设备进行测试时,结果也确实与其态度有所吻合,所有加入测试的设备无一幸免地暴露出数据上的偏差,外观不错的小米手环误差率竟然达到了15%。
潘特兰将这些设备称之为简单、劣质,而他自己认可的可穿戴设备标准,则完全以用户体验为导向。他认为,那些设备光是能将人的步速和心跳频率测出来,本质上是没什么用的,用户需要让这些设备告诉自己,今天他的身体到底好不好,有没有什么欠缺,该如何进行调理等等。他所说的这种我们从未见过的场景,我想就是可穿戴设备和大数据紧密结合的产物了,很遗憾这种产品目前还没问世。
大数据的四个阶段,采集、存储、分析、应用,目前的发展水平似乎仍停留在采集阶段,但对此已有分歧了。大公司喜欢把合理诉求和自我诉求巧妙混合在一起,然后拿出来说事儿,他们对数据的渴望是贪婪的,恨不得能采集的都采集到,然后实现数据互通,最终实现产品化和商业化。
但要注意到的问题是,数据采集和使用仍然是应该有边界的。就拿BAT来说,腾讯把聊天记录作为大数据样本,阿里把交易信息作为大数据样本,百度把越权抓取的非公开信息作为大数据样本,从法理上来说都是存在一定风险的。个人网上信息的所有权在过去并不是个问题,未来一定会是个问题。
潘特兰为此提出的解决方案,则更显人性化,基于用户角度去考虑问题,较少考虑商业因素。他认为,每个人都有权使用自己的数据,选择进入或者退出网络,或者选择是否分享给别人。只有用户对数据应用和安全放心了,不觉得会有什么问题了,才会有真正的大数据。
其实很容易理解这些话的含义,大公司对数据的撷取是主动的,而用户对数据的被收集则是被动的,这对于一个未来的庞大产业而言,不可能不是一个问题。英国微电影“黑镜“中有个场景,在一个人出车祸死后,系统自动搜集此人在各种社交网络上的发言和分享,类似于人肉搜索,然后基于这些数据模仿出其语言,再通过逼真的模拟语音,实现与未亡人进行跨阴阳两界对话的效果。这个场景相当令人震撼,也相当令人担忧。
如果大数据应用到这个地步,必然会出现不良后果,这会反过头来损害大数据产业的发展。潘特兰说的那些话意思在于,你让用户自己去选择个人数据的应用,赋予其主动权,这才是对大数据发展更有好处的事情。
例如,用户如果认为自己的身体数据并没什么隐私问题,你给他退出的权利,他会主动给你上传更多的优质数据,而这些数据是公司们想通过技术手段收集,也收集不来的。可穿戴设备与这种兼顾了用户权利的数据结合,才会达到他心目中的理想效果。
其实我一直都有个看法,通过大数据预测未来是一件不靠谱的事情,不管你的应用技术如何发达,IT设备如何高效,这本质上是一种违背能量守恒定律的臆想,如永动机一样永远不能实现。不过,在预测未来之外,大数据可做的事情其实要比我们想象的更多,如石油带动能源革命一样,会对未来的人类生活产生重大影响。
这个事情需要有序推进还是野蛮生长,着实是值得深思的问题。由于数据维度的不同,文化习惯的差异,大数据之间未来发展到应用阶段时,会呈现出严重的不同步现象,出现失真,解决这个问题的关键,在于规则和标准。而为大数据建立规则和标准,似乎正是潘特兰教授真正心向往之的一件事,因为他知道,这可能会影响到一个革命性产业在未来的走向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06