
用大数据分析保护大数据的安全_数据分析师培训
携程信息泄露事件引发广泛关注,在大数据时代,各种各样的信息充斥而透明,几乎没有任何人、任何组织可以脱身事外,但这种信息暴露的直接后果就是隐私保护变得更加艰难。特别的,如果你的银行账号、密码泄露怎么办?你的文件服务器中存储有重要的机密数据,该怎么进行保护?网络管理员掌控重要的全网数据信息,他的安全风险怎么防范?
既然是大数据时代,那就有可能也用大数据的方法来进行数据保护。很多公司都在进行这方面的科技攻关,包括网络层面的安全解决方案,也包括应用层面的用户信息保护机制。
在网络层面,作为全球领先的信息与通信解决方案供应商,华为在美国RSA2014安全峰会上阐释“用大数据分析铸就安全敏捷网络“的理念,并发布了下一代Anti-DDoS解决方案,提供T级DDoS防护性能,同时宣布T级高性能数据中心防火墙,成功通过了美国NSS实验室的测试,成为业界首款经过第三方认证的T级数据中心防火墙产品。这两款业界领先的高性能产品,引领安全进入T级防护时代,为“大数据”的安全保驾护航。
假设有这样一个案例:张三正在家中,突然有人敲门,等打开门以后,对方却自称快递但走错了地方;结果等张三关门之后,这个人又到李四家敲门,李四把门打开,此人又是同样的说辞;终于,这个人敲到王五家的时候,没有人来开门。他撬开门锁,实施了盗窃。
从我们个人的眼光看,每个人都会认为他这个人行为是正常的,但如果用小区保安的眼光看整个小区的摄像头监控数据,就会发现这是个潜在的威胁,此人的行为异常。
在大数据的背景下,从全网的视角看安全和和从单点来看,差异很大。华为使用基于controller的技术方案可以看到全网的东西,用大数据分析的方法去发现一些潜在的威胁,由此可以建立更高的安全防范。
华为还提出了一个新的技术叫沙箱,就像一个病毒培养皿,它可以模拟软件的运行环境,如果发现可疑应用就会把应用先放到里面,让它在一个假环境里测试性的运行,并时刻监视软件的各种行为。用户把数据送到沙箱里面去观测,自动观测、自动分析,然后自动告警,这样可以把非常潜在的初级阶段的威胁抓出来,更好地保护网络。
当然,在大数据之下,能登陆controller的管理员也需要特别提防,如果管理员出问题,对于网络的影响极大。由此,华为通过UMA来实现对管理员的审计,用以监控风险。以前日志里记录的仅仅都是输入的命令,而UMA不但会记录命令,还会记录当时管理员用这条命令看到的所有信息。UMA像一个摄像机一样,所有的动作都可以记录下来,而且任何人都无法删除,事后还可以审计,这是大数据时代的全网安全协同。
另外的风险来自普通的用户,用户的重要信息可能丢失,可能被盗,在极端的情况下,涉及用户资金的账号密码、身份证件等都可能同时被其他人获取。如此,还能保护用户的信息及资金安全吗?
在这方面,阿里巴巴因为电子商务和互联网金融的原因会首当其冲遇到难题。根据相关人员的介绍,阿里巴巴也在利用大数据的方法进行信息保护的探索,即便在极端情况下也要保护用户的资金安全。
其实,我们经常在影视剧上看到战场上曾经出现过的声东击西的经典方法,一只主力部队准备偷袭战场,为了掩盖调动的信息,往往会仅留下总部的发报员,继续在原地进行伪装的收发电报和指挥,这种方法也确实在战争中成功应用,究其原因就是,每个发报员都会有自己独特的指法、速度,形成“指纹”,敌方的监听部门会根据收发特点来识别军队番号和行动路线,这实际上就是一种大数据的应用。
依据这样的原理,我们每个人在使用PC或手机等登录账号、输入密码、点击链接等也会形成自己的习惯动作,这些动作形成的大数据信息也会被记录和分析,如果哪一天哪一次系统突然发现这些动作都出现了异常,就会采取拦截措施,通过一系列的新增信息核对步骤来保证交易的安全,特殊条件下会中止交易并与资金所有人进行直接沟通核实。
在大数据时代,对于普通用户几乎毫无隐私可言。大数据给网络使用者增添了便利,但同时也给非法使用打开了方便之门。但是,魔高一尺,道高一丈,大数据同时也让我们有了更多更好的进行信息保护的方法。只要我们合理利用,大数据一定会让我们的生活更精彩。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23