京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用大数据分析保护大数据的安全_数据分析师培训
携程信息泄露事件引发广泛关注,在大数据时代,各种各样的信息充斥而透明,几乎没有任何人、任何组织可以脱身事外,但这种信息暴露的直接后果就是隐私保护变得更加艰难。特别的,如果你的银行账号、密码泄露怎么办?你的文件服务器中存储有重要的机密数据,该怎么进行保护?网络管理员掌控重要的全网数据信息,他的安全风险怎么防范?
既然是大数据时代,那就有可能也用大数据的方法来进行数据保护。很多公司都在进行这方面的科技攻关,包括网络层面的安全解决方案,也包括应用层面的用户信息保护机制。
在网络层面,作为全球领先的信息与通信解决方案供应商,华为在美国RSA2014安全峰会上阐释“用大数据分析铸就安全敏捷网络“的理念,并发布了下一代Anti-DDoS解决方案,提供T级DDoS防护性能,同时宣布T级高性能数据中心防火墙,成功通过了美国NSS实验室的测试,成为业界首款经过第三方认证的T级数据中心防火墙产品。这两款业界领先的高性能产品,引领安全进入T级防护时代,为“大数据”的安全保驾护航。
假设有这样一个案例:张三正在家中,突然有人敲门,等打开门以后,对方却自称快递但走错了地方;结果等张三关门之后,这个人又到李四家敲门,李四把门打开,此人又是同样的说辞;终于,这个人敲到王五家的时候,没有人来开门。他撬开门锁,实施了盗窃。
从我们个人的眼光看,每个人都会认为他这个人行为是正常的,但如果用小区保安的眼光看整个小区的摄像头监控数据,就会发现这是个潜在的威胁,此人的行为异常。
在大数据的背景下,从全网的视角看安全和和从单点来看,差异很大。华为使用基于controller的技术方案可以看到全网的东西,用大数据分析的方法去发现一些潜在的威胁,由此可以建立更高的安全防范。
华为还提出了一个新的技术叫沙箱,就像一个病毒培养皿,它可以模拟软件的运行环境,如果发现可疑应用就会把应用先放到里面,让它在一个假环境里测试性的运行,并时刻监视软件的各种行为。用户把数据送到沙箱里面去观测,自动观测、自动分析,然后自动告警,这样可以把非常潜在的初级阶段的威胁抓出来,更好地保护网络。
当然,在大数据之下,能登陆controller的管理员也需要特别提防,如果管理员出问题,对于网络的影响极大。由此,华为通过UMA来实现对管理员的审计,用以监控风险。以前日志里记录的仅仅都是输入的命令,而UMA不但会记录命令,还会记录当时管理员用这条命令看到的所有信息。UMA像一个摄像机一样,所有的动作都可以记录下来,而且任何人都无法删除,事后还可以审计,这是大数据时代的全网安全协同。
另外的风险来自普通的用户,用户的重要信息可能丢失,可能被盗,在极端的情况下,涉及用户资金的账号密码、身份证件等都可能同时被其他人获取。如此,还能保护用户的信息及资金安全吗?
在这方面,阿里巴巴因为电子商务和互联网金融的原因会首当其冲遇到难题。根据相关人员的介绍,阿里巴巴也在利用大数据的方法进行信息保护的探索,即便在极端情况下也要保护用户的资金安全。
其实,我们经常在影视剧上看到战场上曾经出现过的声东击西的经典方法,一只主力部队准备偷袭战场,为了掩盖调动的信息,往往会仅留下总部的发报员,继续在原地进行伪装的收发电报和指挥,这种方法也确实在战争中成功应用,究其原因就是,每个发报员都会有自己独特的指法、速度,形成“指纹”,敌方的监听部门会根据收发特点来识别军队番号和行动路线,这实际上就是一种大数据的应用。
依据这样的原理,我们每个人在使用PC或手机等登录账号、输入密码、点击链接等也会形成自己的习惯动作,这些动作形成的大数据信息也会被记录和分析,如果哪一天哪一次系统突然发现这些动作都出现了异常,就会采取拦截措施,通过一系列的新增信息核对步骤来保证交易的安全,特殊条件下会中止交易并与资金所有人进行直接沟通核实。
在大数据时代,对于普通用户几乎毫无隐私可言。大数据给网络使用者增添了便利,但同时也给非法使用打开了方便之门。但是,魔高一尺,道高一丈,大数据同时也让我们有了更多更好的进行信息保护的方法。只要我们合理利用,大数据一定会让我们的生活更精彩。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20