京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的下一站:快数据_数据分析师培训
当我们所有的行为数据都联网,在云端,我们的下一步应该可能会做什么“大数据”都可以分析后做出预测,但或许这仅仅只是预测,因为“偶然”、因为“人的思维”等种种原因,很多时候,人类不按常理出牌,这样的话,你的数据还能准确的预测出你的行为吗?答案或许是可以的,只是不完全是大数据,而需要快数据!
我们在生活或工作中会碰到以下情景:公司的女神MM一直喜欢吃哈根达斯冰激凌,几乎每天要买一杯,但某一天,她却拿着一个DQ冰雪皇后品尝得津津有味;公司屌丝程序员小明上班早,加班多,完成任务代码质量高,公司团建活动也积极参与,连续多个季度是公司的优秀员工,突然某一天,态度坚决提出离职,说要回家支教。
我让一个从事大数据服务的朋友来预测和解释,朋友讲,如果按大数据基本算法推测,女神MM是不会吃DQ的,因为她的行为数据已经表明,她会继续吃哈根达斯;同样,行为大数据分析得出,程序猿小明很快会晋升为研发经理或总监,而无法预测某天他要回乡支教。那么问题来了,基于受众行为大数据建立应用模型能取代实时的心理反馈数据吗?两者如何结合?
当遇到问卷网的创始人向守军时,我把同样的问题抛给了他,他说这是一个十分有趣的话题,是关于心理反馈数据和受众行为数据的关系。他首先简单向我普及了两个概念:一个是大数据,一个是快数据。比如,我们双11在天猫或京东上购物,我们在这些网站的所有行为:浏览网页、对比商品、下订单、付款、评价商品等等,构成了一幅大数据画面,而所有天猫上的用户的大数据画面即组成了大数据组合。天猫可以根据大数据组合分析哪个省的女神罩杯大,预测哪些商品会畅销;也可以根据一个人的行为轨迹大数据建立模型来预测她可能对什么商品感兴趣,进行广告的定向投放。当这个用户不去点击这样的广告或者这个用户离开天猫,一个月后才再次上天猫时,我们无法从行为大数据去找到相关性或者原因。这个时候,快数据出现了,对于未点击广告或者离开天猫一个月才来的用户,我们通过类似问卷反馈的方式(也可以通过网站技术手段来获得“反馈”,降低实时反馈的门槛),收集用户当时的想法,基于这个实时的数据,我们即可以实时知晓用户心理反馈,并采取对应措施。
向守军以问卷网的用户为例,解释了受众心理反馈互动快数据的应用案例,如全球500强公司强生用问卷的方式收集员工想法,并结合员工的日常表现进行评估打分;初创公司黑马票务用问卷的方式收集音乐制作人的需求,快速的进行产品迭代;乐视TV用表单进行售后服务意见的收集和管理;小米公司通过快数据进行智能硬件试用…
对于为什么快数据能在很多场景上得到应用时,向守军认为,不论是大数据还是快数据,其实我们在应用和解读时,都不能离开对“人性”的理解,对于“人性”的理解,才是我们建立数据解读模型的关键。而恰恰在这一点,实时反馈互动的快数据更加能在数据中体现对“人性”的理解,因为行为易撒谎,而态度则难骗人。
当问到大数据和快数据的关系是否是相互取代时,他给出了否定的回答。恰恰相反,两者可以非常好地形成互补关系,相互映射,相得益彰。比如,在美国,当你访问著名购物网站亚马逊时,一方面它基于你的浏览行为大数据推荐图书;一方面在你离开网站时会给你一份3-5个题目的反馈表,了解你的心理活动;两者结合起来,第二天你可能就会收到它的小礼品邮件或者促销邮件。据前亚马逊数据科学家分析,这样的大数据和快数据互动模型的建立,让亚马逊的满意度提高了1.5个百分点。
快数据会不会成为继大数据后的一个新热点?
企业对于用户的大数据有需求,同样对于基于实时反馈互动的快数据的需求也更加旺盛(甚至对消费类公司,快数据更有价值)。在美国,基于问卷调查的快数据公司surveymonky估值已经超过20亿美元;另一家快数据公司qualtrics也刚以超过10亿美金的估值完成新一轮融资。未来,快数据,大数据,一个是更加的实时反馈,一个是更深的数据沉淀,将会如何发展,让我们拭目以待。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01