
大数据的下一站:快数据_数据分析师培训
当我们所有的行为数据都联网,在云端,我们的下一步应该可能会做什么“大数据”都可以分析后做出预测,但或许这仅仅只是预测,因为“偶然”、因为“人的思维”等种种原因,很多时候,人类不按常理出牌,这样的话,你的数据还能准确的预测出你的行为吗?答案或许是可以的,只是不完全是大数据,而需要快数据!
我们在生活或工作中会碰到以下情景:公司的女神MM一直喜欢吃哈根达斯冰激凌,几乎每天要买一杯,但某一天,她却拿着一个DQ冰雪皇后品尝得津津有味;公司屌丝程序员小明上班早,加班多,完成任务代码质量高,公司团建活动也积极参与,连续多个季度是公司的优秀员工,突然某一天,态度坚决提出离职,说要回家支教。
我让一个从事大数据服务的朋友来预测和解释,朋友讲,如果按大数据基本算法推测,女神MM是不会吃DQ的,因为她的行为数据已经表明,她会继续吃哈根达斯;同样,行为大数据分析得出,程序猿小明很快会晋升为研发经理或总监,而无法预测某天他要回乡支教。那么问题来了,基于受众行为大数据建立应用模型能取代实时的心理反馈数据吗?两者如何结合?
当遇到问卷网的创始人向守军时,我把同样的问题抛给了他,他说这是一个十分有趣的话题,是关于心理反馈数据和受众行为数据的关系。他首先简单向我普及了两个概念:一个是大数据,一个是快数据。比如,我们双11在天猫或京东上购物,我们在这些网站的所有行为:浏览网页、对比商品、下订单、付款、评价商品等等,构成了一幅大数据画面,而所有天猫上的用户的大数据画面即组成了大数据组合。天猫可以根据大数据组合分析哪个省的女神罩杯大,预测哪些商品会畅销;也可以根据一个人的行为轨迹大数据建立模型来预测她可能对什么商品感兴趣,进行广告的定向投放。当这个用户不去点击这样的广告或者这个用户离开天猫,一个月后才再次上天猫时,我们无法从行为大数据去找到相关性或者原因。这个时候,快数据出现了,对于未点击广告或者离开天猫一个月才来的用户,我们通过类似问卷反馈的方式(也可以通过网站技术手段来获得“反馈”,降低实时反馈的门槛),收集用户当时的想法,基于这个实时的数据,我们即可以实时知晓用户心理反馈,并采取对应措施。
向守军以问卷网的用户为例,解释了受众心理反馈互动快数据的应用案例,如全球500强公司强生用问卷的方式收集员工想法,并结合员工的日常表现进行评估打分;初创公司黑马票务用问卷的方式收集音乐制作人的需求,快速的进行产品迭代;乐视TV用表单进行售后服务意见的收集和管理;小米公司通过快数据进行智能硬件试用…
对于为什么快数据能在很多场景上得到应用时,向守军认为,不论是大数据还是快数据,其实我们在应用和解读时,都不能离开对“人性”的理解,对于“人性”的理解,才是我们建立数据解读模型的关键。而恰恰在这一点,实时反馈互动的快数据更加能在数据中体现对“人性”的理解,因为行为易撒谎,而态度则难骗人。
当问到大数据和快数据的关系是否是相互取代时,他给出了否定的回答。恰恰相反,两者可以非常好地形成互补关系,相互映射,相得益彰。比如,在美国,当你访问著名购物网站亚马逊时,一方面它基于你的浏览行为大数据推荐图书;一方面在你离开网站时会给你一份3-5个题目的反馈表,了解你的心理活动;两者结合起来,第二天你可能就会收到它的小礼品邮件或者促销邮件。据前亚马逊数据科学家分析,这样的大数据和快数据互动模型的建立,让亚马逊的满意度提高了1.5个百分点。
快数据会不会成为继大数据后的一个新热点?
企业对于用户的大数据有需求,同样对于基于实时反馈互动的快数据的需求也更加旺盛(甚至对消费类公司,快数据更有价值)。在美国,基于问卷调查的快数据公司surveymonky估值已经超过20亿美元;另一家快数据公司qualtrics也刚以超过10亿美金的估值完成新一轮融资。未来,快数据,大数据,一个是更加的实时反馈,一个是更深的数据沉淀,将会如何发展,让我们拭目以待。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23