
腾讯地图亮肌肉:BAT争霸大数据_数据分析师培训
除夕当天,央视一则“全国加班地图”的节目引起了我的兴趣。
为什么?因为这是腾讯地图开放平台提供的全国加班人群分布图。而这只是腾讯春节推出的三大热图之一!其它两个分别是红包地图、出行热力图。这,是腾讯地图第一次真正展示“大数据”实力的亮肌肉。
就在业界认为地图行业是高德(已被阿里收购)、百度的“双雄会”之时,帝企鹅已经不声不响地赶上来了。(扫描文末二维码关注可获取更多,每日一深度)
【高颗粒度的腾讯“加班地图”】
腾讯加班地图,是腾讯地图开放平台通过对每天超过100亿次的位置定位请求的大数据分析。比如,结合时间点的定位轨迹分析、区域分布特点、行业特征等等,从而分析得出加班用户的省份、城市、区域分布热点图。
以上图为例,图中圈比较密集、颜色偏红的地区加班指数较高,代表该地区加班人数较多,加班时间较长;颜色偏绿的区域,加班指数相对较低。
分省份看,加班人数最多的省份前三分别是广东、江苏、山西;分城市看,加班人数最多的城市前五位是我们的一线城市北京、上海、广州、重庆、深圳;
而对全国范围内区域的加班人数排序:前三的区域是北京国贸、上海南京西路、上海徐家汇, 区域排名前十中上海占3了个,北京、重庆各占2个, 广州、深圳、太原各1个。
再进入更细的颗粒度,来看一下“城市排行”中加班指数最高城市北京的情况:北京加班的人群主要集中在三元桥、国贸一带,指数较高,其中央视新大楼也在国贸商圈内;其次中关村和金融街加班的人也较多,同时还能看到今天中央电视台也有不少人依然在工作岗位。而排名第二的上海的加班情况是,加班人群主要集中在徐家汇、南京西路以及陆家嘴这些地方。
这说明,腾讯地图每日定位请求达到了很高量级(百亿次),精细程度也达到了很高的颗粒度。
【地图,车联网的战略制高点】
为什么这两年腾讯发力猛追地图业务?
我曾写过,时间、空间是一个信息原点的根本属性,目前信息流大多基于timeline机制,因此基于位置的产业LBS将是一片巨大的蓝海。位置服务将成为移动互联网的一项基础服务,也是一个战略制高点。
线报称,lbs事业部在百度内部地位相当特殊,由于移动端入口效应的凸现,李彦宏非常重视百度地图这款产品。而马云则先后两次共斥资十几亿美元,一口气让阿里巴巴整体吞掉了高德地图。
马化腾当然心知肚明,2013年,腾讯在战略注资搜狗时专门留下了当时挂在搜搜旗下的soso地图,更名为腾讯地图,上升到了整个集团战略层面。2014年,腾讯注资四维,获得了最顶级的国家级地图服务资质资源。一方面,腾讯地图产品不断打磨;另一方面,因为微信、手Q的强势拉动,腾讯地图正发力猛追。
更重要的是,移动端的超级入口正呈现马太效应,市场集中度越来越高。微信是业界公认的“超级移动船票”,有潜力成为船票的地图也许是下一个。至少,它是一个重要的基础性服务。
现在整个行业的热点之一,是车联网。当汽车之间与汽车之间通过地理服务连接起来时,产业是极为庞大的。去年,腾讯已经率先推出了“路宝”!
这一场车联网的超级入口战争,才刚刚开始。
【BAT加速布局大数据】
然而,在更重要的层面,地图是BAT争霸大数据的重要组成部分。
大数据,是当下IT领域最时髦的词,简单说就是从各种数据中快速获取信息价值的能力。2012年3月,奥巴马政府宣布投资2亿美元拉动大数据相关产业发展,将“大数据战略”上升为国家战略,奥巴马政府甚至将大数据定义为“未来的新石油”。
美国政府声明说,要通过提高美国从大型复杂的数据集中提取知识和管理的能力,来加强整个国家的竞争力,这被认为是跟互联网同一个级别的时代。显然大数据不止是一个词汇,更是一门技术,是一个产业时代。而中国作为世界上人口最多且GDP第二、互联网规模第二且增长第一的国家,在大数据层面有一个罕见的历史发展机遇。
我曾在《大数据绝不是大忽悠》(订阅微信公众号【王冠雄】后可见)中写过,大数据的精髓在于“大”,它不是抽样而是全样,它不是盲人摸到的象腿或者是象鼻子,而是整个大象本身,大数据的精妙处在于用的人越多越增持,通过这样一个模糊的宏观判断,能够完成一个精准的个体推荐,从而会让整个生产效率得到极大提高。
阿里巴巴、百度、腾讯,三家都把大数据升级为集团级战略。未来,一切生意都是数据的生意。
但是如果略作比较,还是存有很大差异。它不仅与其拥有的数据性质有关,也与技术基因、战略优先级和生态系统能力有关。从三大巨头的数据源看,百度是基于用户搜索行为的需求数据,阿里掌握着交易及信用数据,腾讯则掌握着社交关系数据。以后再详谈。
【结束语】
腾讯地图的迅速增长让人震惊,我却不意外,因为这是战略级业务。地图,依然是BAT三座大山的菜,而且是BAT争霸大数据的重要棋子。
当然,也不是谁拥有最多的用户、流量或数据,谁就在大数据领域最牛。所有关于大数据的论断都认为,大数据并不在于大,质量、性质以及谁拥有它,将决定大数据能被挖掘出来的价值和难度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03