
大数据的出现正在改变着我们的生活方式和工作方式,改变了我们过去对待数据的思维认识,开始更加注重数据的相关性的意义。但是大数据的到来,依托于云计算平台,因此也会面临着一些不可避免的安全威胁,下面根据自己搜集的资料梳理下安全威胁TOP10。
大数据的十大安全威胁之一:分布式编程框架下的安全计算
大数据自然要用到许多分布式计算,比如MapReduce框架,其最著名的实现即Hadoop,将数据分成多个块,针对每个块先做mapper处理,得到一系列的key-value对,然后再由reducer聚类同一个key的值,得到结果。这里容易出现两个问题:一是Hadoop计算结果的正确性依赖于Mapper的运算正确与否,如果存在恶意的Mapper干扰或者意外的错误,将会直接导致最终数据的错误;二是数据在第一轮Mapper的过程中,有可能得到的Key-value很特殊,从而泄露数据用户本身的部分隐私。
大数据的十大安全威胁之二:非关系数据库的安全实现
由于大数据的数据来源混杂,导致数据格式种类繁多,因此很难使用传统的关系型数据库进行体现,NoSQL数据库因此出现并获得快速发展。但是NoSQL数据库在设计实现之初所有的考虑都聚焦在了分布式数据库的实现上,因此并没有单独设置安全功能模块,实际中往往将安全功能作为一个中间件来实现,NoSQL本身没有提供针对安全功能的任何扩展机制,云环境下的复杂问题对NoSQL的安全性提出了诸多挑战。
大数据的十大安全威胁之三:数据存储安全和事务日志安全
传统数据库下,DB可以直接得知数据的迁移和修改情况,但是在大数据下,由于数据变化的速度、范围以及种类都不可同日而语,因此DB不能够容易地跟踪数据的变化。
大数据的十大安全威胁之四:终端输入有效性验证
大数据的数据可能来自于多种来源,当然也包括各种终端,比如私人的BYOD,这些数据的有效性很难保证。我们可以考虑这样的逻辑:大数据依托于数据进行算法处理得出预测,但是如果这些收集上来的数据有问题又如何呢?也许大数据的数据规模可以使得我们无视一些偶然非人为的错误,但是如果有个敌手故意放出干扰数据呢?比如天气预报依赖于许多传感器,如果这些传感器都被恶意修改...或者依靠手机进行某项社会事务的公投,如果敌手可以伪造多个虚假手机ID参与投票...这些无疑都会直接影响最终的数据结果,当然也影响了我们的判断和预测。因此现在非常需要研究相关的算法来确保数据来源的有效性,尤其是有效性事关重要的大数据领域。
大数据的十大安全威胁之五:实时安全监控
传统的安全监控系统针对的是静态的、少量的数据,建立的模型也是有很多欠缺。当面对大数据的规模时,以往的安全监控系统会触发大量的虚假警报。我们非常需要一套在大数据模式下可用的安全系统,它可以在我们需要的时候告诉我们:“谁在访问数据?访问哪些数据?从哪里访问的?”以及“我们是否受到了攻击?请立刻评估下损失?”等等;当然也存在民用系统的可用性,比如实时监控新药投放市场后的异常搜索量,可以及时停止药物滥用。
大数据的十大安全威胁之六:可扩展的隐私保护策略
这段也许与密码协议有关,在大数据时代下,匿名策略已经不能保护我们的隐私了,《大数据时代》中就介绍了父亲不知道,而商家知道其女儿怀孕的这样一个事例。我不需要知晓你的确切信息,但是我只需要将过去分离的信息进行整合,就可以重新“刻画”你。我们现在需要切实可行的隐私保护协议。
大数据的十大安全威胁之七:访问控制策略
有点类似于上面,我们必须确保云上数据的保密性、完整性和可用性。因此必须重新设计访问控制协议,因为传统的“all-or-nothing”的访问控制协议,非常粗地进行网络行为的限制。大数据,没有共享,没有可用,哪来大数据?因此我们既要保证数据保密不被篡改,又要使得可以被一定程度地共享,作为大数据的一份子使用,而这本身就是一对矛盾,幸好我们现在开始有基于属性的访问控制协议,但是这还远远不够。
大数据的十大安全威胁之八:细粒度访问控制
基本问题同上面,只不过这里更多涉及访问控制协议的设计,而上衣额则重在密码学的应用。
大数据的十大安全威胁之九:细粒度审计
大数据的十大安全威胁之十:数据起源
大数据中的数据来源的元数据会因为规模的增长而迅速复杂化,我们经常需要知道数据的起源,即创建的时间,不是在一台主机或网络中,而是在大数据下。我们需要快速省时地确定数据的起源,否则本身便将失去意义。比如侦测内部金融企业的交易记录,或者确定搜索数据的准确性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14