京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用SAS进行数据分析:聚类分析_数据分析师培训
用CLUSTER过程和TREE过程进行谱系聚类
一、CLUSTER过程用法
CLUSTER过程的一般格式为:
PROC CLUSTER DATA=输入数据集
METHOD=聚类方法 选项:
VAR 聚类用变量:
COPY 复制变量:
RUN;
其中的VAR语句指定用来聚类的变量。COPY语句把指定的变量复制到OUTTREE=的数据集中。
PROC CLUSTER语句的主要选项有:
·METHOD=选项,这是必须指定的,此选项决定我们要用的聚类方法,主要由类间距离定义决定。方法有AVERAGE,CENTROID,COMPLETE, SINGLE, DENSITY, WARD, EML, FLEXIBLE, MCQUITTY, MEDIAN, TWOSTAGE等,其中DENSITY,TWOSTAGE等方法还要额外指定密度估计方法(K=,R=或HYBRID)。
·输入DATA=数据集,可以是原始观测数据集,也可以是距离矩阵数据集。
·OUTTREE=输出谱系聚类树数据集,把谱系聚类树输出到一个数据集,可以用TREE过程绘图并实际分类。
·STANDARD选项,把变量标准化为均值0,标准差1。
·PSEUDO选项和CCC选项。PSEUDO选项要求计算伪F和伪t2统计量,CCC选项要求计算R2、半偏R2和CCC统计量。其中CCC统计量也是一种考察聚类效果的统计量,CCC较大的聚类水平是较好的。
二、TREE过程用法
TREE过程可以把CLUSTER过程产生的OUTTREE=数据集作为输入,画出谱系聚类的树图,并按照用户指定的聚类水平(类数)产生分类结果数据集。一般格式如下:
PROC TREE DATA=输入聚类结果数据集
OUT=输出数据集GRAPHICS
NCLUSTER=类数选项:
COPY复制变量:
RUN;
其中COPY语句把输入数据集中的变量复制到输出数据集(实际上这些变量也必须在CLUSTER过程中用COPY语句复制到OUTTREE一数据集)。PROC TREE语句的重要选项有:
DATA=数据集,指定从CLUSTER过程生成的OUTTREE=数据集作为输入。
OUT=数据集,指定包含最后分类结果(每一个观测属于哪一类,用一个CLUSTER变量区分)的输出数据集。
NCLUSTERS=选项,由用户指定最后把样本观测分为多少个类。
HORIZONTAL,画树图时横向画。
例:有三种不同鸢尾花(Setosa,、Versicolor、Virginica),种类信息存入了变量SPECIES,并对每一种测量了50棵植株的花瓣长(PETALLEN),花瓣宽(PETALWID),花萼长(SEPALLEN),花萼宽(SEPALWID)。这个数据己知分类,并不属于聚类分析的研究范围。这里我们为了示例,假装不知道样本的分类情况(既不知道类数也不知道每一个观测属于的类别),让SAS取进行聚类分析,为了进行谱系聚类并产生帮助确定类数的统计量,使用如下过程:

部分结果如下:

这个输出列出了把150个观测每次合并两类,共合并149次的过程。NCL列指定了聚类水平G(即这一步存在的单独的类数)。"-Clusters Joined-"为两列,指明这一步合并了哪两个类。其中OBxxx表示哪一个原始观测,而CLxxx表示在哪一个聚类水平上产生的类。比如,NCL为149时合并的是OB16和OB76,即16号观测和76号观测,NCL为1合并的是CL5和CL2,即类水平为5时得到的类和类水平为2时得到的类, FREQ表示这次合并得到的类有多少个观测。SPRSQ是半偏R2,RSQ是R2,ERSQ是在均匀零假设下的R2的近似期望值,CCC为CCC统计量,PSF为伪F统计量,PST2为伪t2统计量,Tie指示距离最小的候选类对是否有多对。
假设我们知道要分成3类,所以我们用如下的TREE过程绘制树图并产生分类结果数据集:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15