京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析之数据孤岛:你能看到它们吗
从企业和CIO们开始尝试数据挖掘以来,数据孤岛就一直阻碍着商业智能效能的提高。数据孤岛,换句话说昂贵的、需要费尽心血维护却彼此无法兼容的数 据库,指望从它们那儿发掘到伟大的知识,无疑于缘木求鱼。也就是说,数据库的数量和挖掘到的知识产量没有任何关系。正如一位商业智能专家所说的,进进出出 的都是垃圾。
谈到大数据分析-或者叫数据3V(类别、数量和增长率),则是个令大多数公司窒息的流行语。因为,据分析师Ted Friedman说,数据孤岛整指数般的蔓延-就像瘟疫一样。
“在你的公司,任何时间任何地方,都有数据孤岛的存在。从大数据的角度看,简直整个宇宙都充斥着数据孤岛-在防火墙里,在web上,在‘云’端,还有那些 属于其他企业、客户和供应商的却在你这儿出现的数据,”Gartner主持信息管理咨询的Friedman说道,“所有这些使得你更难打破数据孤岛来挖掘 有意义的知识信息。”
那么,CIO在诠释大数据的过程中能起到什么作用呢?和企业遇到的其他IT挑战一样,这个难题及其解决之道也围绕 着人才、流程和技术而展开。CIO不仅需要为为员工培养新技能(包括招募数据科学家、分析师和架构师等),而且需要说服高层:大数据治理是需要高管甚至董 事会关注的重要命题。
突然变时髦的数据管理
对付大数据遭遇的数据孤岛问题有一种 方法,就是孤立分析,重点突破。Gartner专门有一种信息估值过程来运用这种方法。“在庞大的数据海洋中,不同数据有着不同的价值,于是数据挖掘的目 标,就变成了定义怎样的问题空间,然后在空间内深入分析,”Friedman说道,“就我看来,客户往往将分析边界定义得太过宽泛。”
为了突出重点,企业可以首先问自己这样一个问题:我们到底要从数据中得到什么?这些数据和我们的业务有什么联系?我们如何使用这些数据以获得积极的回报?
随着企业越来越关注潜伏在大数据中的价值信息,Gartner注意到越来越多的公司开始设立数据治理委员会。由业务干系人所组成,这些机构关注一切方面 -从哪些是重要的数据源、向什么技术投资,到各种和数据有关的问题,譬如数据质量、数据保留度、数据整合、数据安全性和信息隐私。
外部数据孤岛的危险探索
除了少数IT专家外,也应该开放给其他职员大数据探索的权利,以最大程度从大数据中攫取价值。Gartner及其它专业人士担心,很多组织急于从大数据中牟利,以至于忽视了IT治理的风险,从而付出了侵犯隐私、数据造假等问题而得到严惩的代价。
“在企业里,彻底的数据开放不切实际,”麻省Forrester首席分析师Boris Evelson说道,“有各种各样的监管问题和利益冲突。举个例子,投行的行研师和交易员之间就绝对不可互犯雷池一步。”
在科罗拉多大学国家冰雪研究数据中心(NSIDC)和其数据收集伙伴美国航天局(NASA)看来,保护数据的完整是一项巨大的挑战,NSIDC的IT服 务经理David Gallaher如是说。David的主要任务,是收集、管理记录着世界上所有冰冻地域的以PB级计算的科学数据,并保证以可控的方式分发给需要的研究人 员。“我们需要让人们尽可能方便地获取他们需要的数据,但我们必须得保证他们不可能胡乱更改其中的任何一处,”正在接受地理学培训的Gallaher表 示。另一方面,NSIDC的科学家们每次访问数据后肯定会对其进行更新,所以数据管理的治理原则必须是“正确的人做正确的修改”,Gallaher强调 道。NSIDC目前正在和美国国家科学基金会合作完善其数据治理原则。
数据管理-只要多视图,不要多拷贝
不是所有人同意大数据一定意味着更多的数据孤岛这一说法。IBM大数据项目副总裁Anjul Bhambhri就宣称,大数据其实能“帮助”CIO。
“现在,数据孤岛能够进行自我清理,”在一次针对其一年来为200多家公司清理数据孤岛的访谈中,Bhambhri如是说。一家大型企业为邮件归档建立了 13个数据集市(单是法务部就使用了8个),因为当他们要访问归档邮件时,他们等不及让IT来处理。另一家公司的两个部门分别为自己的web缓存建立了拷 贝。“要知道他们每天就有150亿条缓存要处理,”Bhambhri说道。
新技术-当然,包括IBM的BI大数据产品-可让企业在一个数据 仓库中存储和分析庞大的数据信息。因此,上述两家公司只用保留一个活跃的数据归档,大可不必设立13个归档副本或150亿web缓存。“你的数据只用保存 于一处,来自多处的应用即可对数据同时进行访问,因为数据在存储层次的形式保持不变,”Bhambhri说道。然而,即使她和像她这样的积极倡导大数据分 析的IT人士,也不断提醒企业,有效的大数据分析,需要对已有的IT系统框架进行彻底地改造。“能够有效存储数据是在正确的方向上前进了一大步,”她说 道,“但仅能存储是不够的,有效的分析还需要大量的算法。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12