京公网安备 11010802034615号
经营许可证编号:京B2-20210330
普通员工的数据分析技能决定大数据的成功
当前数据正以每年60%的速度飞增,全球的数据已接近35.2ZB。据IDC预测,今年全球的数据流将达10亿TB的规模。为了对大数据进行收集、整理和存储,CIO们首当其冲地成为商业数据的责任人。然而专家们认为,普通员工的大数据分析能力是利用大数据的关键驱动力所在。
至少,The Corporate Executive Board Company(CEB,总部位于华盛顿)就是这样认为的,CEB最近对企业员工开发了一个“分析成熟度”的测试。CEB信息技术集团的高级总监Shvetank Shah表示:“数据分析面临的唯一障碍就是我们自身。”
Shah认为提升更多员工的分析技能对于数据的有效利用至关重要:“无论一份报告如何优秀,无论我们对数据的处理如何深入,或者我们拥有的计算能力如何充足,直到今天为止,最后的决策还是需要人来做出;而就目前而言我们还不太具备做出杰出决策的能力。”
那么在数据分析方面的误区在哪呢?CEB调查了22家跨国公司的约5000名员工,以期找出当前数据分析的主要短板所在。调查结果表明,43%的受访者属于经验主义者,绝对相信数据分析并且重视他人的意见,另有19%的受访者则是自我主义者 – 他们极少相信数据分析并且常常单方面做出决定。
Shah认为企业需要的是其余38%的怀疑论者。这些员工在数据分析的基础上进行判断,而且愿意倾听不同的声音。
企业所需的数据分析技能
那些旗下员工拥有杰出数据分析能力的企业通常具有如下特征:
? ·让员工知晓数据不是万能的
? ·开设有分析培训课程
? ·拥有能够对其他人进行指导的数量专家
? ·规范的决策流程
下面是支付公司First Data Corp.所用的一份问题列表,该公司以此来测试并提升员工的分析技能:
? ·清晰度:你能否阐明你的意图?请举例说明?
? ·准确性:你如何来证明正确性?
? ·精确性:你是否能具体地给出更多细节?
? ·相关性:这些数据和问题之间有什么关系?
? ·深度:我们面临的困难是什么?
? ·广度:我们是否该从另一个角度看待问题?
? ·逻辑性:各种数据的整合是否有意义?
? ·重要性:哪个问题是最应该优先考虑的?
? ·公平性:你是否有什么固有的偏见?
在CEB的网站上有一个分析技能的测试,可以帮助评估员工是哪一类人(经验主义者、自我主义者或者怀疑论者)。
内嵌的数据分析工具
Gartner的分析和商业智能集团研究副总裁Kurt Schlegel认为,由于越来越多的分析功能内嵌在应用和业务流程中,使得并非所有人都会觉得人的因素会成为决定企业数据分析成败的关键所在,从而也就导致了在员工培训方面的放松。
对于这类内嵌工具,Schlegel举例说:“就拿网站上的推荐引擎来说,它们结合了分析和可定制的业务规则,很快这种技术就会导致电子商务领域内出现越来越多的个性化业务流程。”
然而,仅仅赋予员工数据分析工具是不够的,无论相应的技术多么先进。Forrester的副总裁和高级分析师Boris Evelson认为,对于绩效管理文化的培育同样不可或缺。
“你必须逐一考虑每个部门或者业务单元,否则无法形成清晰的战略。”Evelson说:“只有在清晰战略的推动下,你才能明确自己的目标及相应举措所在。由此你才能知道该关注哪些方面,以及什么样的应用能够帮助你利用好数据。”
CIO在数据分析中的角色
CIO们可以让原始数据变得具有商业意义。“这是一个非常复杂的过程,CIO取得、抽取、净化、整合数据,然后将数据安全地保存起来。”Evelson说:“一旦数据准备好了,CIO们就可以通知业务部门‘这是你们需要的数据,它们非常安全。如果有什么不对或者遗漏的,请及时联系我。’”
Cindi Howson是BIScorecard(位于新泽西Sparta的一家在线信息服务商)的创始人,他认为CIO不能满足于成为一个数据的守护者:“他们还需要充分了解业务。”
总之,技术最终还是无法取代人的判断和决定。“技术能够有助于进行分析并发现模式,但是最终做决定并付诸行动的都是人本身。”Howson解释到。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27