
普通员工的数据分析技能决定大数据的成功
当前数据正以每年60%的速度飞增,全球的数据已接近35.2ZB。据IDC预测,今年全球的数据流将达10亿TB的规模。为了对大数据进行收集、整理和存储,CIO们首当其冲地成为商业数据的责任人。然而专家们认为,普通员工的大数据分析能力是利用大数据的关键驱动力所在。
至少,The Corporate Executive Board Company(CEB,总部位于华盛顿)就是这样认为的,CEB最近对企业员工开发了一个“分析成熟度”的测试。CEB信息技术集团的高级总监Shvetank Shah表示:“数据分析面临的唯一障碍就是我们自身。”
Shah认为提升更多员工的分析技能对于数据的有效利用至关重要:“无论一份报告如何优秀,无论我们对数据的处理如何深入,或者我们拥有的计算能力如何充足,直到今天为止,最后的决策还是需要人来做出;而就目前而言我们还不太具备做出杰出决策的能力。”
那么在数据分析方面的误区在哪呢?CEB调查了22家跨国公司的约5000名员工,以期找出当前数据分析的主要短板所在。调查结果表明,43%的受访者属于经验主义者,绝对相信数据分析并且重视他人的意见,另有19%的受访者则是自我主义者 – 他们极少相信数据分析并且常常单方面做出决定。
Shah认为企业需要的是其余38%的怀疑论者。这些员工在数据分析的基础上进行判断,而且愿意倾听不同的声音。
企业所需的数据分析技能
那些旗下员工拥有杰出数据分析能力的企业通常具有如下特征:
? ·让员工知晓数据不是万能的
? ·开设有分析培训课程
? ·拥有能够对其他人进行指导的数量专家
? ·规范的决策流程
下面是支付公司First Data Corp.所用的一份问题列表,该公司以此来测试并提升员工的分析技能:
? ·清晰度:你能否阐明你的意图?请举例说明?
? ·准确性:你如何来证明正确性?
? ·精确性:你是否能具体地给出更多细节?
? ·相关性:这些数据和问题之间有什么关系?
? ·深度:我们面临的困难是什么?
? ·广度:我们是否该从另一个角度看待问题?
? ·逻辑性:各种数据的整合是否有意义?
? ·重要性:哪个问题是最应该优先考虑的?
? ·公平性:你是否有什么固有的偏见?
在CEB的网站上有一个分析技能的测试,可以帮助评估员工是哪一类人(经验主义者、自我主义者或者怀疑论者)。
内嵌的数据分析工具
Gartner的分析和商业智能集团研究副总裁Kurt Schlegel认为,由于越来越多的分析功能内嵌在应用和业务流程中,使得并非所有人都会觉得人的因素会成为决定企业数据分析成败的关键所在,从而也就导致了在员工培训方面的放松。
对于这类内嵌工具,Schlegel举例说:“就拿网站上的推荐引擎来说,它们结合了分析和可定制的业务规则,很快这种技术就会导致电子商务领域内出现越来越多的个性化业务流程。”
然而,仅仅赋予员工数据分析工具是不够的,无论相应的技术多么先进。Forrester的副总裁和高级分析师Boris Evelson认为,对于绩效管理文化的培育同样不可或缺。
“你必须逐一考虑每个部门或者业务单元,否则无法形成清晰的战略。”Evelson说:“只有在清晰战略的推动下,你才能明确自己的目标及相应举措所在。由此你才能知道该关注哪些方面,以及什么样的应用能够帮助你利用好数据。”
CIO在数据分析中的角色
CIO们可以让原始数据变得具有商业意义。“这是一个非常复杂的过程,CIO取得、抽取、净化、整合数据,然后将数据安全地保存起来。”Evelson说:“一旦数据准备好了,CIO们就可以通知业务部门‘这是你们需要的数据,它们非常安全。如果有什么不对或者遗漏的,请及时联系我。’”
Cindi Howson是BIScorecard(位于新泽西Sparta的一家在线信息服务商)的创始人,他认为CIO不能满足于成为一个数据的守护者:“他们还需要充分了解业务。”
总之,技术最终还是无法取代人的判断和决定。“技术能够有助于进行分析并发现模式,但是最终做决定并付诸行动的都是人本身。”Howson解释到。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10