京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、简介
LevelDB是google开源的一个key-value存储引擎库,从版本1.2开始就能够支持billion级别的数据量了。LevelDB是单进程的服务,性能非常之高,在一台4个Q6600的CPU机器上,每秒钟写数据超过40w,而随机读的性能每秒钟超过10w。LevelDB采用日志式的写方式来提高写性能,但是牺牲了部分读性能。为了弥补牺牲了的读性能,一些人提议使用SSD作为存储介质。
二、编译
LevelDB是一个C++库,而非Server,编译需要g++的支持,这里以1.4为例说明之。
源码可以直接从这里下载,也可以用git clone源码:
#git clone
如果上面操作都无法获取源码,也可以点击这里下载源码。
#cd leveldb && make all
此时在,当前目录(levedb)下会产生libleveldb.a和libleveldb.so,这样就可以使用了。
三、实例
一个LevelDB数据库需要有一个对应的文件系统目录名字,该数据库的所有内容都存储在这个目录下。
LevelDB的使用很简单,一般分三步走:
(1)打开一个数据库实例。
(2)对这个数据库实例进行插入,修改和查询操作。
(3)最后在使用完成之后,关闭该数据库。
#cd ../ && mkdir test && cd test && vi main.cpp
具体实例如下:
#include
#include
#include
#include
int main(int argc, char** argv)
{
leveldb::DB* db;
leveldb::Options options;
// 如果打开已存在数据库的时候,需要抛出错误,将以下代码插在leveldb::DB::Open方法前面
options.create_if_missing = true;
// 打开一个数据库实例
leveldb::Status status = leveldb::DB::Open(options, "/tmp/testdb", &db);
assert(status.ok());
// LevelDB提供了Put、Get和Delete三个方法对数据库进行添加、查询和删除
std::string key = "key";
std::string value = "value";
// 添加key=value
status = db->Put(leveldb::WriteOptions(), key, value);
assert(status.ok());
// 根据key查询value
status = db->Get(leveldb::ReadOptions(), key, &value);
assert(status.ok());
std::cout<
std::string key2 = "key2";
// 添加key2=value
status = db->Put(leveldb::WriteOptions(),key2,value);
assert(status.ok());
// 删除key
status = db->Delete(leveldb::WriteOptions(), key);
// 查询key2
assert(status.ok());
status = db->Get(leveldb::ReadOptions(), key2, &value);
assert(status.ok());
std::cout<
status = db->Get(leveldb::ReadOptions(), key, &value);
if (!status.ok())
{
std::cerr<
else
{
std::cout<
// 在对数据库进行了一系列的操作之后,需要对数据库进行关闭,该操作比较简单即删除该对象即可
delete db;
return 0;
}
#g++ -o main main.cpp ../leveldb/libleveldb.a -lpthread -I../leveldb/include
实例编译完成后,如下来执行即可看到结果:
#./main
value
key2==value
key: NotFound:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29