京公网安备 11010802034615号
经营许可证编号:京B2-20210330
时间序列分析之季节分解(上)_数据分析师
一、什么是时间序列
时间序列的分析方法就是将历史数据按照时间的顺序进行排列并进行统计分析研究,模拟出事物变化发展的规律,建立预测模型,预测事物未来发展及变化趋势,确定市场预测值。它是数据外推的高级方法。
1、水平型时间数列
水平型时间数列的走势无倾向性,既不倾向于逐步增加,也不倾向于逐步减少,总是在某一水平上上下波动,且波动无规律性,即时间数列的后序值,既可高于水平值、也可低于水平值,因这一水平是相对稳定的。故水平型数列又称为稳定型时间数列或平稳型时间数列。
通常呈水平型时间数列的有日用生活必需品的销售量,某种耐用消费品的开箱合格率、返修率等等。
2、季节型时间数列
季节型时间数列的走势按日历时间周期起伏,即在某日历时间段内时间数列的后序值逐步向上,到达顶峰后逐步向下,探谷底后又逐步向上,周而复始。因为最初研究产生于伴随一年四季气候的变化而出现的现象数量变化,故称为季节型时间数列。其实,“季节”可是一年中的四季、一年中的12个月、一月中的4周、一周中的7天等等。
通常呈季节型时间数列的有月社会零售额,与气候有关的季节性商品季度、月度销售量等等。
3、循环型时间数列
循环型时间数列的走势也呈周期性变化,但他不是在一个不变的时间间隔中反复出现,且每一周期长度一般都有若干年。通常呈循环型时间数列的有期货价格、商业周期等等。
4、直线趋势型时间数列
直线趋势型时间数列的走势具有倾向性,即在一段较长的时期之内(“长”是相对于所研究数列的时间尺度而言),时间数列的后序值逐步增加或逐步减少,显示出一种向上或向下的趋势,相当于给水平型时间数列一个斜率。通常呈直线型时间数列的有:某段时期的人均收入、商品的销售量等等。
5、曲线趋势型时间数列
曲线趋势型时间数列的走势也具有倾向性,且会逐渐转向,包括顺转和逆转,但不发生周期性变化,时间数列后序值增加或减少的幅度会逐渐扩大或缩小。通常呈曲线型时间数列的有某种商品从进入市场到被市场淘汰的销售量变化等等。其实,季节型时间数列和循环型时间数列也是曲线趋势型时间数列,只不过他们具有周期性特征而各单独成为一种时间数列而已。
二、时间序列的季节分解模型
我们把时间序列看成是长期趋势因素,季节因素,周期因素以及不规则因素四个部分综合作用,复合叠加的结果。按对四种变动因素相互关系的不同假设,可将时间序列分为加法模型和乘法模型。
时间序列分析之季节分解(上)
1、加法模型:这种模型的应用前提是四种变动因素为相互独立关系,时间数列便是各因素相加的和,表现为:Yt=Tt+St+Ct+It
其中:Yt表示时间序列在t时刻的绝对数值;Tt也是绝对指数,与Yt同单位;St、Ct、It表示季节变化、周期变化和不规则变化围绕长期趋势所产生的偏差,或是正直,或是负值,他们的量纲与Tt相同,表示是在Tt的基础上变化了若干单位。
2、乘法模型:这种模型的应用前提为四种因素之间是交错的影响关系,时间序列便是各因素的乘积,表现为:Yt=Tt×St×Ct×It
其中:Yt、Tt均为绝对指标,St、Ct、It是指在Tt上下波动的数值,被称为指数,它们分别表示由于季节、周期以及不规则因素的影响,在序列t时刻的趋势值得基础上增加或减小百分比。
这两种模型只是形式上的不同,乘法模型可以通过在等式两边取对数而转换为加法模型,而时间序列就是以上四个因素相叠加综合作用的结果。实际应用中,当采用年度数据时,季节因素就被掩盖了。事实上,有些现象的时间序列并非四种因素均存在,有时仅有Tt、St和Ct,或其它形式。在社会经济系统中,主要采用乘法模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06