
大数据OR能源大数据_数据分析师培训
一、为什么谈大数据?(why)
小编对于克强总理谈到的“大数据”很是关心,于是开始进行了信息搜集。在Web of Science数据库,小编对“大数据”相关领域已发表的SCI/SSCI论文进行了统计分析。
【检索条件:主题=(“Big Data”),时间跨度=(所有年份),数据库=(SCI-EXPANDED,SSCI),检索日期=(2015/03/06)】
看到图1,小编也是有些吃惊了。2014年,“大数据”相关的SCI/SSCI论文发表了902篇,占历年全部发表论文数的59.3%(论文发表总数:1521篇)。2015年,有可能继续 “疯狂”。
图 1 大数据相关领域SCI和SSCI论文发表与引用统计
二、什么时候开始研究大数据的?(when)
2006年,“大数据”领域的第1篇论文诞生。需要说明的是,这一年总共只发表了3篇论文。2008年,《Nature》推出了“大数据”专 刊。2011年,《Science》推出了关于数据处理的专刊“Dealing with Data”。2012年,美国奥巴马政府宣布推出“大数据的研究和发展计划”。
到2015年,大数据经历短短9年时间,似乎在以 “违反”学术规律的速度生长、扩散。
三、大数据是什么?(what)
近年来,大数据在创新思维、管理理念、信息技术等方面的影响力和效果日益显著,受到各方高度关注。但遗憾的是,大数据目前尚没有统一的定义。
小编尝试整理了“大数据”理念在数据采集、处理、应用等方面的特征:一是可对不同领域、不同类型、不同渠道的跨界数据进行系统采集与分析。例 如,意大利米兰电信公司将电话通信大数据与人口、地理数据进行集成采集与分析,实现对城市热点商业区域、交通拥堵区域的动态预测。二是可对各种在线行为进 行全过程记录,大幅改善处理效率、成本、响应时间。以IBM公司发布的大数据技术BLU Acceleration为例,查询速度比传统技术快100倍以上,数据存储成本只有其十分之一。三是与应用创新联系更为密切,成为推动管理创新、商业模 式创新与产业革命的内在动力。例如,阿里集团将客户网络活跃度、网上信用评价、余额宝交易量等在线数据转化为客户信用评级,在金融信贷业具有颠覆式创新意 义。
四、哪些国家(地区)/机构在研究大数据?(where)
排在首位的依然是美国,论文发表数755篇,占所有发表数1521的49.6%。其次是中国,论文发表占比15.0%。不错的成绩嘛。
再来看看研究大数据发表成果最多的研究机构。恭喜中科院,中科院超越哈佛大学成为了发表大数据成果最多的研究机构!(注:小编去年查过排在榜首的是哈佛)。
图 2 国家/地区排名前十统计
图 3 研究机构排名前十统计
五、谁才是大数据研究领域的真正专家?(who)
谁是大数据研究领域的真正专家?让我们用数据说话。(这算不算“大数据”的应用呢?)
“大数据”领域发表文章最多的是“ANONYMOUS”(译为“匿名的”)!竟然无人认领发表SCI/SSCI文章最多的专家称号(注:SCI/SSCI论文发表在某种程度上反映了作者在该领域的影响力),真是遗憾。
图 4 研究作者排名前十统计
六、如何使用大数据?(how)
“大数据”都在哪些方面得到了应用?
排在前四位的研究方向依次是计算机科学、工程学、科学技术和商业经济,发表文章共计889篇,全部论文占比58.4%。
综合来看,小编相信,大数据在能源管理中的应用前途还是非常光明的。
图 5 研究方向排名前十统计
七、能源大数据?
以主题=(“Big Data” AND “Energy OR Power”)在Web of Science数据库进行搜索,也许会有意外的发现啊……
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03