京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从行为分析到身份认证 大数据助推跨屏营销
数字营销曾踏着互联网的浪潮极大冲击了传统的营销模式,即通过在第三方网站(比如新 浪、搜 狐等门户)布代码,搜集、分析用户行为,然后针对性投放广告,因此,被视为一种更加精准的推广营销模式。
但在大数据时代,这种模式面临的问题开始暴露。周文彪表示,根据浏览行为做数据分析是一个弱关系,不是强关系,悠易互通也曾做过三年尝试,但去年发现,单纯以第三方数据去分析,数据丰富度不够,想要得到一些用户的深度属性,难度很大,导致广告投放的精准度依然不高。
因此,今年悠易互通推出了“数据银行”,引入品牌商的第一方数据,并通过与第三方数据的匹配,形成新的数字营销模式。
数据银行的核心便是从单纯的对用户行为分析升级为对用户身份的认证,进而进行跟踪分析。同时,在多屏时代,基于身份认证和后端的大数据分析,可以实现跨屏营销。
数据银行思路
“对广告客户的第一方数据和第三方数据整合,是我们做数据银行要最先解决的问题。”悠易互通负责产品的副总裁蒋楠表示。
周文彪介绍说,数据银行的大数据来源主要包括第一方数据(客户网站上布代码搜集数据)、自己的数据(去全网布代码搜集分析的数据)、第三方数据(比如百 度、淘 宝、新 浪等)、垂直领域的一些数据供应商。
据了解,悠易互通的数据银行模式首先是将代码布到广告客户的官网和APP上,进行数据搜集分析,比如有1000万个用户点击进入,首先要分析有多少人只是到达首页,多少人进入到产品页,又有多少人转化购买了产品。
周文彪表示,第一方数据非常精准,因为浏览的用户和品牌的关联度很高,不只看过广告,而是有足够的停留时间,这样分析的结果比在第三方平台上分析的数据准确很多。但也有局限性,一般的品牌商自有数据量比较小,对于营销远远不够,所以要结合第三方数据。
在两类数据结合的过程中,悠易互通加入了ID身份认证,既可以激活品牌商的原有客户,同时以此又可以带来增量用户,并形成循环。
周文彪以一家汽车品牌商为例,该品牌商已拥有500万的CRM数据,包括名字、住址、手机号、身份证号以及保养情况等,但最大的问题是这个数据库没有被充分运用起来,一直处于离线状态,无法跟踪这些用户平时在线干什么。
悠易互通则通过对这500万客户的手机号加密,然后去自己的数据库中(同样积累了大量加密手机号)匹配,一旦确定为同一个用户,便会给该用户赋予一个悠易互通的ID。当该ID在其它网站浏览时,便可实时跟踪,并结合CRM离线数据库,了解用户的需求,比如该保养或换机油了,精确地推送给用户。周文彪称,通过这种方式已为该品牌商激活300万用户。
而对于增量用户,周文彪表示,因为这300万用户的全网行为都可分析,便可以总结出这些用户的在线行为特征,然后再去第三方数据库中寻找一批行为特征相似的人群去投放汽车广告,比如面向3000万潜在用户投放,如果有500万用户到4S店试驾或购车,又可以进入数据库,“用300万现有客户去找潜在的客户,这是一个很有效的方法”。
由此,围绕数据银行形成“第一方数据库挖掘——匹配ID——跟踪全网行为——总结特性——寻找类似用户精准投放广告——新数据进入第一方数据库”的循环模式。
跨屏营销场景
百度展示广告事业部产品总监沈昭阳在悠易互通一次发布会上公布的一组数据显示,中国65%的用户拥有电脑、平板、手机甚至更多的设备,他们的行为大量分散在各种设备上。同时他称,PC流量的自然增长速度无法承载产品所需要的增长速度,PC不可能做到流量的翻倍增长,因此只从PC深挖,已经看到了局限性。
多屏时代的用户行为变化必将激发出新的营销模式。周文彪表示,不同的终端拥有不同的ID,以前会认为不同的终端设备后面是不同的人,但在多屏时代,不同设备背后可能是一个人,如果还按照以前的模式投放广告,势必会造成资源浪费,跨屏营销就是要确定用户正在使用哪个屏幕,并且以差异化的方式将相关产品推送到正在使用的屏幕上。
但要实现跨屏营销,背后依然需要大数据的支撑。周文彪称,今年对一群用户的行为数据分析发现,同一个人,阅读行为发生在手机上的频次远远高于PC,而在对汽车、家电信息的获取上,PC端的使用量远远高于移动端。传统模式下,汽车品牌商分析移动端数据时,就会认为该用户是一个阅读用户,而不是一个汽车相关用户,就忽略掉了,但这个人可能就是一个汽车发烧友,只是在其它屏幕上进行相关行为。
解决这一问题,依然是通过统一ID的方式,即通过ID账号实时跟踪用户行为,形成大数据,以此综合分析判断使用多屏的用户属性。悠易互通是百度移动流量仅有的两大DSP合作方之一,百度旗下的音乐、地图等应用均在PC端和移动端实行统一ID账号,悠易互通在与其流量交易平台对接时,该ID信息进入悠易互通平台。
但从目前来看,并非每家大平台都开放这部分数据,因此周文彪称,另一种方式是通过IP号段,在同一IP号段下,即使不同的屏幕也可判断可能是一个人,成功率没有第一种准确,但也能达到60%到70%,在互联网营销领域,这个水平已经很高了。
周文彪称,跨屏时代的数字营销,最大的难点还是技术,对大数据分析能力要求非常高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04