京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据营销 传统企业的华丽转身_数据分析师培训
于是,向互联网转型迫在眉睫。然而如何顺利转型,却不是每个广告主都能做到的。怎样才是有效的大数据营销模式,在2014悠易DSP DAY上海站的论坛中,来自数据分析行业专家,成功完成互联网华丽转身的知名传统企业相关负责人,将带您一同探寻大数据营销的奥秘。
大数据营销趋势及扮演的角色
大数据营销要产生效果,需要一定的学习积累包括磨合,这个不是短期内可以产生效果的,它不像今天大家都在投的搜索引擎和直接投放电视广告,预算越大,产生的营销效果越好,这是可以有正向比例的。而利用大数据做营销,效果就如同Log抛物线,越到顶端加速越快,但是起步相对比较难,如果没有等到加速阶段就放弃,自然不会产生客观的效果,对于广告主来说,需要意识到的是,大数据营销需要背后海量数据的积累和分析,这是和普通的营销方式所不同的。
安客诚亚太区产品总监李辉表示,即使有很多的趋势,但大数据营销的本质没有变,就是通过合适的渠道找到合适的人,建立关系,实现销售。最关键的还是营销。
还有一个就是移动,移动造成的受众时间碎片化,跟PC广告不同的是,广告主需要想出受众所在的场景,这是比较困难的。
“在和广告主接触的时候,被问到最多的数据营销问题就是数据带来的价值”,李辉讲到。“数据不是短期内可以一蹴而就的,企业需要有一个内部的数据系统,这对企业也是一个很大的转型。
作为国内知名的广告主企业,海尔做营销的主要目的是什么?海尔是不是真正使用了大数据营销,有成功的解决方案?
海尔家电产业集团数据战略发展总监孙鲲鹏说:无交互不海尔,无数据不营销。数据可以提升我们的营销的效果,通过对数据的采集、挖掘、预测,能够帮助我们提高海尔的营销效率和效果,这是直接的好处。另外还有一个根本的好处是优化用户体验,以前没有数据做基础的时候,企业是单方面的把产品推销给用户。现在有了数据,可以通过需求预测数据模型洞察用户需求,大规模一对一精准营销,这样的用户体验是不一样的。也就是说,以前是为产品找用户,现在是为用户找产品。
至于海尔的数据模型是如何建立的,安客诚李辉介绍说,这些都基于海尔几十年的经验和线下习惯。安客诚将海尔系统来自不同渠道的售后售前和线上数据整合起来,基于这个可以做一些用户行为分析、建模、标签化。在应用到媒体的时候,还有一个要解决的问题,就是把数据和媒体数据实现连接,因为媒体这边也有用户人群的画像,有这么多用户标签,海尔的数据和悠易的数据对接,就可以实现在里面的人群寻找。
未来数字化营销的趋势展望
对企业来说,大数据营销已经成为未来营销新趋势,广告主期待未来会有什么数据在国内市场产生?更期待什么样的数据产品?
当提到这个问题时, 孙鲲鹏表示主要有三个方面:
第一是生态圈。目前海尔数据偏线下,从生产、开发到销售、服务,拥有的是第一方的线下实名数据,缺少线上数据,期待建立一个数据生态圈,在确保用户数据安全的条件下,借用先进的方法,让外部的线上数据和海尔的线下数据进行匹配,丰富用户画像,更加精准地洞察用户。
第二是开放。迫切希望数字营销行业能够开放,而不是大家都把自己的信息关在围墙内。越开放越安全,越关门越危险。至于开放什么?希望多举行类似的论坛,互相连接,不谈恋爱不见面怎么结婚?
第三是标准。希望建立数据行业标准。比如说安全,到底什么叫数据安全?比如海尔与互联网企业之间,什么样的安全标准双方都可以接受?包括企业的DMP数据管理平台与外部的DSP平台对接,PMP、RTB的开展,现有标准是否最合适?而且这个标准需要通俗易懂,否则这个新事物很难快速推广。
对于建立行业标准,安客诚李辉也表示赞同,未来安客诚将解决数据连接性问题,怎样能够有一个很好的数据连接技术平台,能够既保护好数据的产权,又实现数据的价值衡量。最后实现技术层面和整个业态的开放和广告主的开放。
杨纯表示,Admaster在2015年更希望为广告主提供好两个方面的工作,第一,连接外面的互联网数据,更好的为顾客服务。第二,帮助广告主把现在已有的数据,包括自有数据,怎么能够更好的在媒介环境里形成更加清晰全面的认识,只有了解才能投放,这两件事情做完以后,就是整个大数据的体现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09