京公网安备 11010802034615号
经营许可证编号:京B2-20210330
近段时间数据分析越来越多火了,大家都越来越依赖数据分析,认为数据分析总能做出正确的选择。这里来说几个数据分析失败的案例降降温!
数据分析失败案例之数据给企业带来的噩梦
上海柴远森先生出差来北京的时候,在西单买了一本市场调查的书。3个月以后,他为这本书付出了三十几万元的代价。更可怕的是,这种损失还在继续,除非柴先生的宠物食品公司关门,否则那本书会如同魔咒班般伴随着他的商业生涯。
“最近两年,宠物食品市场空间增加了两三倍,竞争把很多国内企业逼到了死角。”《中国财富》在2005年北京民间统计调查论坛上见到了柴先生,“渠道相近,谁开发出好的产品,谁就有前途。以前做生意靠经验,我觉得产品设计要建立在科学的调研基础上。去年底,决定开始为产品设计做消费调查。”
为了能够了解更多的消费信息,柴先生设计了精细的问卷,在上海选择了1000个样本,并且保证所有的抽样在超级市场的宠物组购物人群中产生,内容涉及:价格、包装、食量、周期、口味、配料等6大方面,覆盖了所能想到的全部因素。沉甸甸的问卷让柴氏企业的高层着实振奋了一段时间,谁也没有想到市场调查正把他们拖向溃败。
2005年初,上海柴氏的新配方、新包装狗粮产品上市了,短暂的旺销持续了一星期,随后就是全面萧条,后来产品在一些渠道甚至遭到了抵制。过低的销量让企业高层不知所措,当时远在美国的柴先生更是惊讶:“科学的调研为什么还不如以前我们凭感觉定位来的准确?”到2005年2月初,新产品被迫从终端撤回,产品革新宣布失败。
柴先生告诉《中国财富》:“我回国以后,请了十多个新产品的购买者回来座谈,他们拒绝再次购买的原因是宠物不喜欢吃。”产品的最终消费者并不是“人”,人只是一个购买者,错误的市场调查方向,决定了调查结论的局限,甚至荒谬。
经历了这次失败,柴先生认识到了调研的两面性,调研可以增加商战的胜算,而失败的调研对企业来说是一场噩梦。
不完备甚至不科学的数据采集给企业带来损失的不只是柴先生自己,在这次论坛上记者还见到了来自东北的北华饮业策划总监刘强,他们在进行新产品开发过程中进行了系统的口味测试,却同样蒙受了意想不到的失败。
数据分析失败案例之中国人不喝冰红茶
一间宽大的单边镜访谈室里,桌子上摆满了没有标签的杯子,有几个被访问者逐一品尝着不知名的饮料,并且把口感描述出来写在面前的卡片上……这个场景发生在1999年,当时任北华饮业调研总监的刘强组织了5场这样的双盲口味测试,他想知道,公司试图推出的新口味饮料能不能被消费者认同。
此前调查显示:超过60%的被访问者认为不能接受“凉茶”,他们认为中国人忌讳喝隔夜茶,冰茶更是不能被接受。刘强领导的调查小组认为,只有进行了实际的口味测试才能判别这种新产品的可行性。
等到拿到调查的结论,刘强的信心被彻底动摇了,被测试的消费者表现出对冰茶的抵抗,一致否定了装有冰茶的测试标本。新产品在调研中被否定。
直到2000年、2001年,以旭日升为代表的冰茶在中国全面旺销,北华饮业再想迎头赶上为时已晚,一个明星产品就这样穿过详尽的市场调查与刘强擦肩而过。说起当年的教训,刘强还满是惋惜:“我们举行口味测试的时候是在冬天,被访问者从寒冷的室外来到现场,没等取暖就进入测试,寒冷的状态、匆忙的进程都影响了访问者对味觉的反应。测试者对口感温和浓烈的口味表现出了更多的认同,而对清凉淡爽的冰茶则表示排斥。测试状态与实际消费状态的偏差让结果走向了反面。”
“驾御数据需要系统谋划。”好在北华并没有从此怀疑调研本身的价值,“去年,我们成功组织了对饮料包装瓶的改革,通过测试,我们发现如果在塑料瓶装的外型上增加弧型的凹凸不仅可以改善瓶子的表面应力,增加硬度,更重要的是可以强化消费者对饮料功能性的心理认同。”
采访中,北京普瑞辛格调研公司副总经理邵志刚先生的话似乎道出了很多企业的心声“调研失败如同天气预报给渔民带来的灾难,无论多么惨痛,你总还是要在每次出海之前,听预报、观天气、看海水。”
数据分析失败案例之3个小细节1千万大风险
普瑞辛格调研公司给《中国财富》出示了两组数据,来说明调研的严谨性。同样的调研问卷,完全相同结构的抽样,两组数据结论却差异巨大。邵志刚介绍说,国内一家知名的电视机生产企业,2004年初设立了20多人的市场研究部门,就是因为下面的这次调查,部门被注销、人员被全部裁减。
问题:列举您会选择的电视机品牌?
其中一组的结论是:有15%的消费者选择本企业的电视机;另一组的得出的结论却是:36%的消费者表示本企业的产品将成为其购买的首选。巨大的差异让公司高层非常恼火,为什么完全相同的调研抽样,会有如此矛盾的结果呢?公司决定聘请专业的调研公司来进行调研诊断,找出问题的真相。
普瑞辛格的执行小组受聘和参与调查执行的访问员进行交流,并很快提交了简短的诊断结论:第二组在进行调查执行过程中存在误导行为。调研期间,第二组的成员佩带了公司统一发放的领带,而在领带上有本公司的标志,其尺寸足以让被访问者猜测出调研的主办方;其次,第二组在调查过程中,把选项的记录板(无提示问题)向被访问者出示,而本企业的名字处在侯选题板的第一位。以上两个细节,向被访问者泄露了调研的主办方信息,影响了消费者的客观选择。
这家企业的老总训斥调研部门的主管:“如果按照你的数据,我要增加一倍的生产计划,最后的损失恐怕不止千万。”
市场调查是直接指导营销实践的大事,对错是非可以得到市场验证,只是人们往往忽视了市场调查本身带来的风险。一句“错误的数据不如没有数据”,包含了众多中国企业家对数据的恐慌和无奈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06