京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代安全要怎样的大数据分析技术_数据分析师培训
网络时代的发展日新月异,技术与体验的改变与改进正变得异常迅速。如今,我们的网络已经从千兆迈向了万兆时代,这便使得诸多网络安全设备要分析的数据包数据量急剧上升。而随着下一代防火墙等安全产品的出现,安全网关所要进行的分析的数据量大增、{CDA数据分析师培训}安全监测的内容不断细化使得安全产品所要监测和分析比以往更多的数据。除了数据包、日志、资产数据,更多的诸如漏洞信息、配置信息、身份与访问信息、用户行为信息、应用信息、业务信息、外部情报信息等正在逐渐加入安全要素信息中。
正如上述情况所说的那样,随着企业和组织安全体系架构变得越来越复杂,与之俱来的是各类安全数据正在变得越来越多。而传统的分析能力已不足以应对当下安全数据的分析。在面对新型威胁的兴起时,传统的分析方法无法对更多的安全信息做出准确分析,也就更加无从谈起更加快速的做出判定和响应。而以上信息安全所面临的这些问题,正是大数据时代带来的挑战。
在此背景下,对信息安全业而言,如何将大数据技术应用于安全领域、将大数据分析技术应用于信息安全的技术的大数据安全分析的需求正变得愈加急迫。而与此同时,安全数据的数量、速度、种类的迅速膨胀,不仅带来了海量异构数据的融合、存储和管理的问题,更是对传统的安全分析方法带来了挑战。
目前,市场上绝大多数安全分析工具和方法都是针对小数据量设计的,在面对大数据量时难以为继。新的攻击手段层出不穷,需要检测的数据越来越多,传统的分析技术已是不堪重负。
一方面,高速海量安全数据的采集和存储变得困难,而异构数据的存储和管理同样变得困难;而传统的安全分析技术对历史数据的检测能力很弱,对安全事件的调查效率十分低;以往,安全系统相互独立,无法有效地进行协同工作,对于趋势性的威胁更是无法预测,在应对当今诸如APT等高级威胁的攻击时防护效果十分薄弱。另一方面,传统的分析方法大都采用基于规则和特征的分析引擎,必须要有规则库和特征库才能工作,而规则和特征只能对已知的攻击和威胁进行描述,无法识别未知的攻击,或者是尚未被描述成规则的攻击和威胁。
可见,对于大数据安全分析而言,如何以安全数据自身的特点和安全分析为目标,让大数据安全分析的应用更加凸显其价值是十分必要的。
如今,对于信息与网络安全分析出现了两个基本趋势:情境感知的安全分析与智能化的安全分析。Gartner曾经在2010年的两份报告中分别指出:“未来的信息安全将是情境感知的和自适应的。”以及“要为企业安全智能的兴起做好准备。”
情境感知的安全分析,更多地需要利用相关性要素信息的综合研判来提升安全决策的能力,例如:资产感知、位置感知、拓扑感知、应用感知、身份感知、内容感知,等等。利用情境感知分析技术,安全分析会得以在纵深方面得到极大的扩展;而更多的安全要素信息的纳入,也拉升了分析的空间和时间范围。而安全智能则更加强调将过去分散的安全信息进行集成与关联,独立的分析方法和工具进行整合形成交互,最终实现智能化的安全分析与决策。
从长远看,借助大数据安全分析技术,能够更好地解决大量安全要素信息的采集、存储的问题,借助基于大数据分析技术的机器学习和数据挖据算法,亦能够更加智能地洞悉信息与网络安全的态势,从而更加主动、弹性地去应对新型复杂的威胁和未知多变的风险。在未来一段时期内,关于大数据安全分析技术的探究,必会成为新的市场热点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01