
数据的四大特征_大数据
我们总是在谈数据分析,数据分析什么的,那我们现在先不谈数据分析,我们先来谈谈数据分析的基础——数据。那么到底什么是数据,数据有什么特征呢?这个问题虽基础却重要。
这里我们所说的数据,仅指应用于企业运营的市场信息。它是认识事物的中间环节,是事物的表面特征,其作用在于消除事物的不确定性。它至少具有以下四个基本特征。
所谓时效性是指数据的发生和运用要有个提前期,失去时效性,就失去了潜在机会。
举个例子,以前在广州有个大厦,它对数据的时效性运用的就很好。据说有一年,它的经理和别人聊天,人家无意间提起说那年春天广州的雨水将特别大,于是他特意去了广州气象台证实,证实后,他开始调查,发现深圳一家厂子里积压着20万多把雨伞。当时正是11月份,旱季,这家厂子压着20万多把雨伞早就想出手,所以这个大厦的经理就去了深圳,以极低的价格就把雨伞盘进来了。结果那年广州的春天来得特别早,一过春节,这雨哗哗就下起来了,他趁机20多万把雨伞往出卖,结果一销而空。这就是利用了信息的时效性。
简单吗?很简单,只需要到气象台问一下,但是,有多少企业会问呢?其实并不多,因为很多企业就没有提前获取数据的意识。经常是等到下雨了再进雨伞,那就没买卖做了。
数据要具有时效性,或者说数据分析要有预见性,因此,大家在采集数据的时候,要注意数据的时效性,要具备用现在的数据预测未来市场的走向的意识。
数据分析师分析数据的特征之二分散性
数据的分散性,具体表现在两个方面。
1、没有固定发生地
数据没有固定发生地,因此,需要多渠道采集数据,除了上网、图书馆查资料、还要留意电视、杂志等媒体的信息,关注统计局、行业协会、研究机构的数据或者直接做市场调研。
2、零散分布,相互关联才完整
数据是零散的,真正能还原数据的完整性,并充分利用数据的,都是勤于思考,努力寻找数据关联性的人。
在旧社会的解放区,人人都听到,河北省出了一个白毛仙姑,但是谁也没有去琢磨,当时只有20岁的贺敬之琢磨出来了:这叫做旧社会把人变成鬼,新社会把鬼变成人。于是他就写出了不朽的名著叫做《白毛女》,正可谓“人人之所见、人人所未思”。
数据分析师分析数据的特征之三概率性
什么是概率性?简单理解就是看似结果不确定的事情,多次重复,就会显示出一定的规律性。
比如我们抛硬币。抛5次、10次,到底有几次正面向上不好说,但若抛几百次,几千次,正面向上的可能性就稳定在50%左右。
有一个生产装汽水、装啤酒的塑料箱的小厂厂长,了解了数据的概率性,就把北京邮政编码本找来,找到北京130个单位,发了130封信,结果就回来1封,让他拿着样品过去看看,概率够低的。这个厂长怕别人搞不好,就自己夹着箱子去了。这家单位在4楼,厂长把箱子递过去,那老兄看都没看,一推窗户,‘磅’的一声,就给扔出去了。然后那老兄就往下跑,这厂长就在后面追,到了楼下,一看这箱子,一点没坏!那老兄说:“行!这箱子挺结实的,定货!”半年的买卖就有了。玩的就是概率。
数据的概率性告诉我们:成功=努力+等待。
所谓再创性是指我们所看到的数据只是一种现象和启示,不同的人会得出不同的结论。而要想透过现象看本质,需要用发展的眼光看问题,通过深入的分析,找出隐藏在市场现象背后的机会。
例如,二战后,松下幸之助开始研制一个非常不起眼的家庭用电机,好多人嘲笑他,说电机都是工厂用的,你这电机家庭干什么使呢。但是,松下幸之助看到了家用电机的发展,他说:‘现在是零,将来就是无限。’用发展的眼光看问题,才能再创性地挖掘机会。
再讲个故事:有甲、乙两个推销员,同时到非洲的一个岛国卖鞋子。这个岛国里人人都光着脚丫。甲推销员一见到他们都不穿鞋,于是认为鞋子在这里没有销路;而乙推销员将数据进行再创,看到他们不穿鞋,于是拿着鞋子来做调查,经调查发现:这里的人之所以不穿鞋,是因为他们的脚都特别宽,而市面上的鞋太窄,他们穿不进去。于是他建议公司生产出专门适合这个岛国的鞋子。此外,他还把尺寸合适的鞋子送给当地的酋长,酋长一穿鞋,感觉舒服极了,而老百姓一看酋长都穿鞋了,他们也想穿。等到老百姓也想穿,就有市场了,原来都不穿鞋,现在人人都要穿鞋,于是乙推销员让鞋子很有销路。这个故事说明,数据只是现象和启发,只有深入的分析,才能再创性地挖掘机会。
以上就是数据的四个特征:时效性、分散性、概率性、再创性。
数据分析师了解数据的四个特征,对于我们的数据工作具有启发。例如,数据采集就要充分考虑到数据的这四个特征:
基于时效性,数据采集要有项目周期;
基于概率性,数据采集要有抽样设计;
基于分散性,针对不同的数据来源要有不同的采集方法和问卷设计
基于再创性,要对采集到的数据信息深入地分析和解读
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28