京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大科学开启大数据、大发现新时代_数据分析师
大科学工程,是以工程方式、计划手段、汇聚科技资源与力量整体推进重大科技计划的最新范式,是科学研究由传统的“手工小作坊”向现代大规模“工场”演进的一次革命。大科学范式的“兵团作战”,将以空域和领域维度上的大规模,甚至超越时域维度上的长尺度,实现今朝一日、史上数年的突破。
大科学是大数据的摇篮,大数据是大科学的产物
大科学的王者之道始于大数据的产生。人类历史上的大数据,源于科技领域,确切地说源于大科学研究。曼哈顿计划打开了微观世界,并开创了借用人造的大科学设施洞开微观世界的崭新科学方法论,以此为依托启动了一系列大科学计划,它们产生了史无前例的超大规模数据。如位于瑞士的欧洲核子研究中心、由全球逾8000位物理学家合作兴建的大型强子对撞机,2008年试运行后,数据量即达25PB/年,2020年建成后将达200PB/年,因此他们率先创建了“大数据”的概念。无独有偶,旨在测定人类基因组30亿碱基遗传密码的基因组计划,进行个体基因组测定时数据量即已高达13PB/年。而此计划后,学界受其鼓舞开展了一系列遗传背景迥异、不同疾病群体以及大量其他物种的基因组测序,数据量迅速逼近ZB级(是PB的百万倍),不约而同地创造了“大数据”概念。今天人们常用的互联网最初就是这些领域的科学家为解决海量数据传输而发明的。
人类理性对物质世界、人类社会和精神世界的认识,其最高境界是智慧。而要达此境界必然经过数据、信息、知识三个层阶,其中,数据是信息之母、知识之初、智慧之源。随着信息技术持续数十年的迅猛发展以及人类社会各行各业信息化的强力辐射,在人类纪元新千年的钟声敲响不久,文明世界就掀起了史无前例的大数据狂潮,其奔涌之疾,升腾之烈,不似海啸,胜似海啸。人们欢呼,因为它是摧枯拉朽、一往无前的狂飙,将以势不可挡的革命性力量,开辟新的天地;人们恐惧,因为它是行不由缰、漫无方向的野马,有着难以预想的破坏性力量。此时此刻,人类需要冷静,人类必须理性。
人类文明迄今经历了三次浪潮:第一次是农业革命,数千年前出现并持续数千年,释放出“物之力”;第二次是工业革命,数百年前出现并已持续数百年,释放出“能之力”;第三次是智业革命,数十年前开始孕育,目前正处初级阶段,将不断释放“智之力”。1980年,托夫勒预言了这次新起的文明,并明确指出这次文明将以信息化为标志。其后,恰如其料,技术与文明的信息化有如神助,在人类社会各领域、全球各地域甚至更广阔的空域天域似地火一般的点燃、普及。信息社会、信息文明似乎转眼间唾手即得,更有大数据时代的“即时”到来好像为此作了一目了然的注解。冷静分析,实则不然。数据是信息之母,没有数据,何来信息?缺乏数据的时代,怎能是名副其实的信息时代?而刚刚才来的大数据时代,恰恰表明此前是数据欠缺的“时代”。此前,人类发现、开辟的大量全新的数据空间,构建的超大型数据生产“工厂”、超大型数据仓库,建设的“信息高速公路”及其四通八达的网络,为大数据的涌现及其广泛辐射确实提供了充分的先决条件,但它们仅是大数据的摇篮,而不是摇篮里的婴儿。
从大数据向大信息升华,亟待统计科学与数据科学的革新
数据是信息之母,但再好的数据也不会自动生成信息。大数据得来不易,但转化为大信息更难,而不能转化为大信息的大数据就是横亘于人类认知之旅的理性黑洞、知性沙漠。实际上,人类理性跨过蒙昧之初,就拥有了将数据转换为信息的能力,这也是智人与直立人的分水岭。
然而,面对时下大数据时代奔涌的多元、多源、异构的海量数据,无论是被美誉为“孕育了现代科学”的统计科学,还是应大科学之运而生、当今正如日中天的数据科学,都还只能是望洋兴叹。今日之大数据,明日之大信息,扭转乾坤者,还属革新后的统计科学与数据科学。
信息虽然衍进自数据、珍贵于数据,但也只是其通向知识的中继站。知识,是人类理性认识世界的结晶,是改造世界的基石。培根在《伟大的复兴》中豪迈地预言:知识就是力量。大约400年后,人类终于迎来“知识经济时代”。知识经济,作为人类社会经济增长方式与经济发展的全新模式,被称为经济领域的哥白尼革命,其基本特征是:知识运营为经济增长方式、知识产业成为龙头产业、知识经济成为新的最活跃的经济形态。
由此可见,知识不仅是力量,而且是时代最核心、最强劲的先锋力量。但我们同时必须清醒地认识到:大数据与大知识,尚隔两重天,如将大数据比作洪水、比作奔流,它只有首先蒸发为大信息的气流,继而升腾为大知识的彩虹,才能气贯长虹、一飞冲天而成为引领知识经济时代的“巨龙”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12