京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大科学开启大数据、大发现新时代_数据分析师
大科学工程,是以工程方式、计划手段、汇聚科技资源与力量整体推进重大科技计划的最新范式,是科学研究由传统的“手工小作坊”向现代大规模“工场”演进的一次革命。大科学范式的“兵团作战”,将以空域和领域维度上的大规模,甚至超越时域维度上的长尺度,实现今朝一日、史上数年的突破。
大科学是大数据的摇篮,大数据是大科学的产物
大科学的王者之道始于大数据的产生。人类历史上的大数据,源于科技领域,确切地说源于大科学研究。曼哈顿计划打开了微观世界,并开创了借用人造的大科学设施洞开微观世界的崭新科学方法论,以此为依托启动了一系列大科学计划,它们产生了史无前例的超大规模数据。如位于瑞士的欧洲核子研究中心、由全球逾8000位物理学家合作兴建的大型强子对撞机,2008年试运行后,数据量即达25PB/年,2020年建成后将达200PB/年,因此他们率先创建了“大数据”的概念。无独有偶,旨在测定人类基因组30亿碱基遗传密码的基因组计划,进行个体基因组测定时数据量即已高达13PB/年。而此计划后,学界受其鼓舞开展了一系列遗传背景迥异、不同疾病群体以及大量其他物种的基因组测序,数据量迅速逼近ZB级(是PB的百万倍),不约而同地创造了“大数据”概念。今天人们常用的互联网最初就是这些领域的科学家为解决海量数据传输而发明的。
人类理性对物质世界、人类社会和精神世界的认识,其最高境界是智慧。而要达此境界必然经过数据、信息、知识三个层阶,其中,数据是信息之母、知识之初、智慧之源。随着信息技术持续数十年的迅猛发展以及人类社会各行各业信息化的强力辐射,在人类纪元新千年的钟声敲响不久,文明世界就掀起了史无前例的大数据狂潮,其奔涌之疾,升腾之烈,不似海啸,胜似海啸。人们欢呼,因为它是摧枯拉朽、一往无前的狂飙,将以势不可挡的革命性力量,开辟新的天地;人们恐惧,因为它是行不由缰、漫无方向的野马,有着难以预想的破坏性力量。此时此刻,人类需要冷静,人类必须理性。
人类文明迄今经历了三次浪潮:第一次是农业革命,数千年前出现并持续数千年,释放出“物之力”;第二次是工业革命,数百年前出现并已持续数百年,释放出“能之力”;第三次是智业革命,数十年前开始孕育,目前正处初级阶段,将不断释放“智之力”。1980年,托夫勒预言了这次新起的文明,并明确指出这次文明将以信息化为标志。其后,恰如其料,技术与文明的信息化有如神助,在人类社会各领域、全球各地域甚至更广阔的空域天域似地火一般的点燃、普及。信息社会、信息文明似乎转眼间唾手即得,更有大数据时代的“即时”到来好像为此作了一目了然的注解。冷静分析,实则不然。数据是信息之母,没有数据,何来信息?缺乏数据的时代,怎能是名副其实的信息时代?而刚刚才来的大数据时代,恰恰表明此前是数据欠缺的“时代”。此前,人类发现、开辟的大量全新的数据空间,构建的超大型数据生产“工厂”、超大型数据仓库,建设的“信息高速公路”及其四通八达的网络,为大数据的涌现及其广泛辐射确实提供了充分的先决条件,但它们仅是大数据的摇篮,而不是摇篮里的婴儿。
从大数据向大信息升华,亟待统计科学与数据科学的革新
数据是信息之母,但再好的数据也不会自动生成信息。大数据得来不易,但转化为大信息更难,而不能转化为大信息的大数据就是横亘于人类认知之旅的理性黑洞、知性沙漠。实际上,人类理性跨过蒙昧之初,就拥有了将数据转换为信息的能力,这也是智人与直立人的分水岭。
然而,面对时下大数据时代奔涌的多元、多源、异构的海量数据,无论是被美誉为“孕育了现代科学”的统计科学,还是应大科学之运而生、当今正如日中天的数据科学,都还只能是望洋兴叹。今日之大数据,明日之大信息,扭转乾坤者,还属革新后的统计科学与数据科学。
信息虽然衍进自数据、珍贵于数据,但也只是其通向知识的中继站。知识,是人类理性认识世界的结晶,是改造世界的基石。培根在《伟大的复兴》中豪迈地预言:知识就是力量。大约400年后,人类终于迎来“知识经济时代”。知识经济,作为人类社会经济增长方式与经济发展的全新模式,被称为经济领域的哥白尼革命,其基本特征是:知识运营为经济增长方式、知识产业成为龙头产业、知识经济成为新的最活跃的经济形态。
由此可见,知识不仅是力量,而且是时代最核心、最强劲的先锋力量。但我们同时必须清醒地认识到:大数据与大知识,尚隔两重天,如将大数据比作洪水、比作奔流,它只有首先蒸发为大信息的气流,继而升腾为大知识的彩虹,才能气贯长虹、一飞冲天而成为引领知识经济时代的“巨龙”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27