京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从大数据到智能数据 你准备好了吗_数据分析师
在工业化时代,机械力量的崛起改变了各行各业的面貌。在信息时代,计算机处理技术创造了新的商业模式。随着我们进入大数据时代,那些拥有繁荣发展前景的企业具备以下特征:巧妙地利用数据捕捉到能够改变游戏规则的分析理论和具有洞察力的观点,进而创造出新的创新型解决方案。
我们的研究表明,十家机构投资者中有九家认为数据和分析理论是关键性的战略优先事项。但是,把一件事放在优先位置并不总是等于给予了该事项应有的关注。换句话说,投资行业的很多人吃尽苦头才学到以下道理,即在大海里捞针是一回事,用这根针来缝东西又完全是另一码事。
数据方面的引领者和落后者的区别不是因为领先者更有实力而是因为落后者的瘫痪不作为。简单地说,可以很容易地—尽管昂贵—购买外置服务器和软件来收集和处理你的公司和所在行业产生的无穷无尽的数据流。但是,缺乏洞察分析的信息会鼓励不作为。这些信息没有被使用;瘫痪随之发生。你的企业—其所有的卖点—将会在竞争中落后。你可以告诉你的股东和董事会,你有一个大数据策略,但是你不能告诉他们你有一个智能数据解决方案。
对于来自日益复杂的投资世界的数据,智能数据解决方案能够帮助对其进行修正、管理和分析。因为科技使这些数据能够转移至实时平台,由此提供了宽阔的视野来支持风险管理和合规管理领域的关键决策制定。随着更为先进的分析工具的引进,关键是人们具备必要的专业知识来对数据进行理解并根据分析结果采取行动。
当我们理解了数据的目标时,大数据就变成了智能数据。比方说,金融机构可以探索利用大数据科技来降低成本—通过自动化把成本变得更低。大量的信息和庞大的计算能力也能够帮助减少时间的消耗—从简单的、更快速的执行到针对出现的风险进行建模对冲。
大数据可能包括的是有关客户潜在的需求信息;智能数据则提供了客户正在寻找的解决方案。它不仅向企业显示其客户的需求方向,也能够更容易地支持内部商业决策。
新市场意味着要对新的信息和新的语言代码进行阐释。作为投资者,传统上往往集中于做多策略,现在则为了追求阿尔法值转而进入新的另类资产类别,那么他们必须建立起必要的基础设施来支持这些新类型的投资。因此,风险管理成为一个投资者特别关注的问题。除了考虑上述新资产类别的风险,投资者还必须分析其投资决策的变化会对整体资产组合造成怎样的影响。
多资产类别、跨资产组合的分析学是理解风险所有含义的关键所在。我见过我们的机构投资者在这个过程中对数据管理感到困难,特别是当他们从传统的另类资产经理那里汇集信息和进行分析风险的时候。此外,他们自己的客户要求更大的透明度和更多的汇报。在这里,假如有一个框架能够汇集来自不同来源的数据并置入能够提供客户定制的风险报告的工具,这有助于解决上述挑战并展示出聪明地使用数据的好处。
监管汇报的复杂性和深度已经带来了更多的挑战。在很多情况下,金融机构现在被要求汇集和阐释其公司内部的所有信息并将这些信息转化为一个实时的资产组合概览。这不仅提供了监管者所要求的透明度,而且也赋予了投资者以下能力,即从商业智能平台数据中更好地洞察造市交易并据此做出更好的投资决策。
今天的市场领袖了解上述问题,他们已经迅速采取了大胆的举措来确保数据不被降级到仅被后台办公室用于会计和基准设定。简单地说,对最好的风险管理的需求以及投资者之间的透明度已经将数据置于前沿,作为一个关键的卖点和基金经理之间的一个区别点。
好消息是许多投资者理解这对于其业务和资产组合长期表现的关键性。我们的研究表明,被调查的400个机构投资者中,有86%在过去三年已经增加了对数据和分析学的基础设施投资。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15